上一小结学习了简单的k-近邻算法的实现方法,但是这并不是完整的k-近邻算法流程,k-近邻算法的一般流程:
1.收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据。一般来讲,数据放在txt文本文件中,按照一定的格式进行存储,便于解析及处理。
2.准备数据:使用Python解析、预处理数据。
3.分析数据:可以使用很多方法对数据进行分析,例如使用Matplotlib将数据可视化。
4.测试算法:计算错误率。
5.使用算法:错误率在可接受范围内,就可以运行k-近邻算法进行分类。
已经了解了k-近邻算法的一般流程,下面开始进入实战内容。
海伦女士一直使用在线约会网站寻找适合自己的约会对象。尽管约会网站会推荐不同的任选,但她并不是喜欢每一个人。经过一番总结,她发现自己交往过的人可以进行如下分类:
1.不喜欢的人
2.魅力一般的人
3.极具魅力的人
海伦收集约会数据已经有了一段时间,她把这些数据存放在文本文件datingTestSet.txt中,每个样本数据占据一行,总共有1000行。datingTestSet.txt数据下载: 数据集下载
海伦收集的样本数据主要包含以下3种特征:
1.每年获得的飞行常客里程数
2.玩视频游戏所消耗时间百分比
3.每周消费的冰淇淋公升数
这里不得不吐槽一句,海伦是个小吃货啊,冰淇淋公斤数都影响自己择偶标准。打开txt文本文件,数据格式如图2.1所示。
在将上述特征数据输入到分类器前,必须将待处理的数据的格式改变为分类器可以接收的格式。分类器接收的数据是什么格式的?从上小结已经知道,要将数据分类两部分,即特征矩阵和对应的分类标签向量。在kNN_test02.py文件中创建名为file2matrix的函数,以此来处理输入格式问题。 将datingTestSet.txt放到与kNN_test02.py相同目录下,编写代码如下:
# * coding:utf-8_*_
# 作者 :XiangLin
# 创建时间 :23/02/2020 20:27
# 文件 :kNN_test02.py
# IDE :PyCharm
import numpy as np
'''
函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力
Parameters:
filename - 文件名
Returns:
returnMat - 特征矩阵
classLabelVector - 分类Label向量
'''
def file2matrix(filename):
# 打开文件
fr = open(filename)
# 读取文件所有内容
arrayOLines = fr.readlines()
# 得到文件行数
numberOfLines = len(arrayOLines)
# 返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
returnMat = np.zeros((numberOfLines,3))
print(returnMat)
# 返回的分类标签向量
classLabelVector = []
# 行的索引值
index = 0
for line in arrayOLines:
# s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
line = line.strip()
# 使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
listFormLine = line.split('\t')
# 将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
returnMat[index,:] = listFormLine[0:3]
# 根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
if listFormLine[-1] == 'didntLike':
classLabelVector.append(1)
elif listFormLine[-1] == 'smallDoses':
classLabelVector.append(2)
elif listFormLine[-1] == 'largeDoses':
classLabelVector.append(3)
index += 1
return returnMat,classLabelVector
'''
函数说明:main函数
Parameters:
无
Returns:
无
'''
if __name__ == '__main__':
# 打开的文件名
filename = "datingTestSet.txt"
# 打开并处理数据
datingDataMat, datingLabels = file2matrix(filename)
print(datingDataMat)
print(datingLabels)
可以看到,我们已经顺利导入数据,并对数据进行解析,格式化为分类器需要的数据格式。接着我们需要了解数据的真正含义。可以通过友好、直观的图形化的方式观察数据。
在kNN_test02.py文件中编写名为showdatas的函数,用来将数据可视化。编写代码如下:
# * coding:utf-8_*_
# 作者 :XiangLin
# 创建时间 :23/02/2020 20:48
# 文件 :kNN_test03.py.py
# IDE :PyCharm
import numpy as np
from matplotlib.font_manager import FontProperties
import matplotlib.lines as mlines
import matplotlib.pyplot as plt
'''
函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力
Parameters:
filename - 文件名
Returns:
returnMat - 特征矩阵
classLabelVector - 分类Label向量
'''
def file2matrix(filename):
# 打开文件
fr = open(filename)
# 读取文件所有内容
arrayOLines = fr.readlines()
# 得到文件行数
numberOfLines = len(arrayOLines)
# 返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
returnMat = np.zeros((numberOfLines, 3))
print(returnMat)
# 返回的分类标签向量
classLabelVector = []
# 行的索引值
index = 0
for line in arrayOLines:
# s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
line = line.strip()
# 使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
listFormLine = line.split('\t')
# 将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
returnMat[index, :] = listFormLine[0:3]
# 根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
if listFormLine[-1] == 'didntLike':
classLabelVector.append(1)
elif listFormLine[-1] == 'smallDoses':
classLabelVector.append(2)
elif listFormLine[-1] == 'largeDoses':
classLabelVector.append(3)
index += 1
return returnMat, classLabelVector
'''
函数说明:可视化数据
Parameters:
datingDataMat - 特征矩阵
datingLabels - 分类Label
Returns:
无
'''
def showDatas(datingDataMat,datingLabels):
# 设置汉字格式
font = FontProperties(fname=r"D:\研究生\实验数据\迅雷下载\simsunttc\simsun.ttc", size=14)
# 将fig画布分隔成1行1列,不共享x轴和y轴,fig画布的大小为(13,8)
# 当nrow=2,nclos=2时,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域
fig,axs = plt.subplots(nrows=2,ncols=2,sharex=False,sharey=False,figsize=(13,6))
numberOfLabels = len(datingLabels)
LabelsColors = []
for i in datingLabels:
if i == 1:
LabelsColors.append('black')
if i == 2:
LabelsColors.append('orange')
if i == 3:
LabelsColors.append('red')
# 画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第二列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5
axs[0][0].scatter(x = datingDataMat[:,0],y = datingDataMat[:,1],color = LabelsColors,s = 15,alpha = .5)
# 设置标题,x轴label,y轴label
axs0_title_text = axs[0][0].set_title(u'每年获得的飞行常客里程数与玩视频游戏所消耗时间占比',FontProperties=font)
axs0_xlabel_text = axs[0][0].set_xlabel(u'每年获得的飞行常客里程数', FontProperties=font)
axs0_ylabel_text = axs[0][0].set_ylabel(u'玩视频游戏所消耗时间占', FontProperties=font)
plt.setp(axs0_title_text, size=9, weight='bold', color='red')
plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black')
plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black')
# 画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5
axs[0][1].scatter(x=datingDataMat[:, 0], y=datingDataMat[:, 2], color=LabelsColors, s=15, alpha=.5)
# 设置标题,x轴label,y轴label
axs1_title_text = axs[0][1].set_title(u'每年获得的飞行常客里程数与每周消费的冰激淋公升数', FontProperties=font)
axs1_xlabel_text = axs[0][1].set_xlabel(u'每年获得的飞行常客里程数', FontProperties=font)
axs1_ylabel_text = axs[0][1].set_ylabel(u'每周消费的冰激淋公升数', FontProperties=font)
plt.setp(axs1_title_text, size=9, weight='bold', color='red')
plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black')
plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black')
# 画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5
axs[1][0].scatter(x=datingDataMat[:, 1], y=datingDataMat[:, 2], color=LabelsColors, s=15, alpha=.5)
# 设置标题,x轴label,y轴label
axs2_title_text = axs[1][0].set_title(u'玩视频游戏所消耗时间占比与每周消费的冰激淋公升数', FontProperties=font)
axs2_xlabel_text = axs[1][0].set_xlabel(u'玩视频游戏所消耗时间占比', FontProperties=font)
axs2_ylabel_text = axs[1][0].set_ylabel(u'每周消费的冰激淋公升数', FontProperties=font)
plt.setp(axs2_title_text, size=9, weight='bold', color='red')
plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black')
plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black')
# 设置图例
didntLike = mlines.Line2D([], [], color='black', marker='.',
markersize=6, label='didntLike')
smallDoses = mlines.Line2D([], [], color='orange', marker='.',
markersize=6, label='smallDoses')
largeDoses = mlines.Line2D([], [], color='red', marker='.',
markersize=6, label='largeDoses')
# 添加图例
axs[0][0].legend(handles=[didntLike, smallDoses, largeDoses])
axs[0][1].legend(handles=[didntLike, smallDoses, largeDoses])
axs[1][0].legend(handles=[didntLike, smallDoses, largeDoses])
# 显示图片
plt.show()
'''
函数说明:main函数
Parameters:
无
Returns:
无
'''
if __name__ == '__main__':
# 打开的文件名
filename = "datingTestSet.txt"
# 打开并处理数据
datingDataMat, datingLabels = file2matrix(filename)
print(datingDataMat)
print(datingLabels)
showDatas(datingDataMat,datingLabels)
通过数据可以很直观的发现数据的规律,比如以玩游戏所消耗时间占比与每年获得的飞行常客里程数,只考虑这二维的特征信息,给我的感觉就是海伦喜欢有生活质量的男人。为什么这么说呢?每年获得的飞行常客里程数表明,海伦喜欢能享受飞行常客奖励计划的男人,但是不能经常坐飞机,疲于奔波,满世界飞。同时,这个男人也要玩视频游戏,并且占一定时间比例。能到处飞,又能经常玩游戏的男人是什么样的男人?很显然,有生活质量,并且生活悠闲的人。我的分析,仅仅是通过可视化的数据总结的个人看法。我想,每个人的感受应该也是不尽相同。
表2.1给出了四组样本,如果想要计算样本3和样本4之间的距离,可以使用欧式距离公式计算。
计算方法如图2.4所示。
我们很容易发现,上面方程中数字差值最大的属性对计算结果的影响最大,也就是说,每年获取的飞行常客里程数对于计算结果的影响将远远大于表2.1中其他两个特征-玩视频游戏所耗时间占比和每周消费冰淇淋公斤数的影响。而产生这种现象的唯一原因,仅仅是因为飞行常客里程数远大于其他特征值。但海伦认为这三种特征是同等重要的,因此作为三个等权重的特征之一,飞行常客里程数并不应该如此严重地影响到计算结果。
在处理这种不同取值范围的特征值时,我们通常采用的方法是将数值归一化,如将取值范围处理为0到1或者-1到1之间。下面的公式可以将任意取值范围的特征值转化为0到1区间内的值:
newValue = (oldValue - min) / (max - min)
其中min和max分别是数据集中的最小特征值和最大特征值。虽然改变数值取值范围增加了分类器的复杂度,但为了得到准确结果,我们必须这样做。在kNN_test02.py文件中编写名为autoNorm的函数,用该函数自动将数据归一化。代码如下:
# * coding:utf-8_*_
# 作者 :XiangLin
# 创建时间 :24/02/2020 13:03
# 文件 :KNN_test04.py
# IDE :PyCharm
import numpy as np
'''
函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力
Parameters:
filename - 文件名
Returns:
returnMat - 特征矩阵
classLabelVector - 分类Label向量
'''
def file2matrix(filename):
# 打开文件
fr = open(filename)
# 读取文件所有内容
arrayOLines = fr.readlines()
# 得到文件行数
numberOfLines = len(arrayOLines)
# 返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
returnMat = np.zeros((numberOfLines, 3))
print(returnMat)
# 返回的分类标签向量
classLabelVector = []
# 行的索引值
index = 0
for line in arrayOLines:
# s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
line = line.strip()
# 使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
listFormLine = line.split('\t')
# 将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
returnMat[index, :] = listFormLine[0:3]
# 根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
if listFormLine[-1] == 'didntLike':
classLabelVector.append(1)
elif listFormLine[-1] == 'smallDoses':
classLabelVector.append(2)
elif listFormLine[-1] == 'largeDoses':
classLabelVector.append(3)
index += 1
return returnMat, classLabelVector
'''
函数说明:对数据进行归一化
Parameters:
dataSet - 特征矩阵
Returns:
normDataSet - 归一化后的特征矩阵
ranges - 数据范围
minVals - 数据最小值
'''
def autoNorm(dataSet):
# 获得数据的最小值
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
# 最大值和最小值的范围
ranges = maxVals - minVals
# shape(dataSet)返回dataSet的矩阵行列数
normDataSet = np.zeros(np.shape(dataSet))
# 返回dataSet的行数
m = dataSet.shape[0]
# 原始值减去最小值
normDataSet = dataSet - np.tile(minVals,(m,1))
# 除以最大和最小值的差,得到归一化数据
normDataSet = normDataSet / np.tile(ranges,(m,1))
# 返回归一化数据结果,数据范围,最小值
return normDataSet,ranges,minVals
'''
函数说明:main函数
Parameters:
无
Returns:
无
'''
if __name__ == '__main__':
# 打开的文件名
filename = "datingTestSet.txt"
# 打开并处理数据
datingDataMat, datingLabels = file2matrix(filename)
normDataSet, ranges, minVals = autoNorm(datingDataMat)
print(normDataSet)
print(ranges)
print(minVals)
从图的运行结果可以看到,我们已经顺利将数据归一化了,并且求出了数据的取值范围和数据的最小值,这两个值是在分类的时候需要用到的,直接先求解出来,也算是对数据预处理了。
机器学习算法一个很重要的工作就是评估算法的正确率,通常我们只提供已有数据的90%作为训练样本来训练分类器,而使用其余的10%数据去测试分类器,检测分类器的正确率。需要注意的是,10%的测试数据应该是随机选择的,由于海伦提供的数据并没有按照特定目的来排序,所以我们可以随意选择10%数据而不影响其随机性。
为了测试分类器效果,在kNN_test02.py文件中创建函数datingClassTest,编写代码如下:
# * coding:utf-8_*_
# 作者 :XiangLin
# 创建时间 :24/02/2020 13:19
# 文件 :KNN_test05.py
# IDE :PyCharm
import numpy as np
import operator
'''
函数说明:kNN算法,分类器
Parameters:
inX - 用于分类的数据(测试集)
dataSet - 用于训练的数据(训练集)
labes - 分类标签
k - kNN算法参数,选择距离最小的k个点
Returns:
sortedClassCount[0][0] - 分类结果
'''
def classify0(inX,dataSet,labels,k):
# numpy函数shape[0]返回dataSet的行数
dataSetSize = dataSet.shape[0]
# 在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
diffMat = np.tile(inX,(dataSetSize,1)) - dataSet
# 二维特征相减后平方
sqDiffMat = diffMat**2
# sum()所有元素相加,sum(0)列相加,sum(1)行相加
sqDistance = sqDiffMat.sum(axis = 1)
# 开方,计算出距离
distances = sqDistance ** 0.5
# 返回distances中元素从小到大排序后的索引值
sortedDistIndices = distances.argsort()
# 定一个记录类别次数的字典
classCount = {}
for i in range(k):
# 取出前k个元素的类别
voteIlabel = labels[sortedDistIndices[i]]
# dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
# 计算类别次数
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
# python3中用items()替换python2中的iteritems()
# key=operator.itemgetter(1)根据字典的值进行排序
# key=operator.itemgetter(0)根据字典的键进行排序
# reverse降序排序字典
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
# 返回次数最多的类别,即所要分类的类别
return sortedClassCount[0][0]
'''
函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力
Parameters:
filename - 文件名
Returns:
returnMat - 特征矩阵
classLabelVector - 分类Label向量
'''
def file2matrix(filename):
# 打开文件
fr = open(filename)
# 读取文件所有内容
arrayOLines = fr.readlines()
# 得到文件行数
numberOfLines = len(arrayOLines)
# 返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
returnMat = np.zeros((numberOfLines, 3))
print(returnMat)
# 返回的分类标签向量
classLabelVector = []
# 行的索引值
index = 0
for line in arrayOLines:
# s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
line = line.strip()
# 使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
listFormLine = line.split('\t')
# 将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
returnMat[index, :] = listFormLine[0:3]
# 根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
if listFormLine[-1] == 'didntLike':
classLabelVector.append(1)
elif listFormLine[-1] == 'smallDoses':
classLabelVector.append(2)
elif listFormLine[-1] == 'largeDoses':
classLabelVector.append(3)
index += 1
return returnMat, classLabelVector
'''
函数说明:对数据进行归一化
Parameters:
dataSet - 特征矩阵
Returns:
normDataSet - 归一化后的特征矩阵
ranges - 数据范围
minVals - 数据最小值
'''
def autoNorm(dataSet):
# 获得数据的最小值
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
# 最大值和最小值的范围
ranges = maxVals - minVals
# shape(dataSet)返回dataSet的矩阵行列数
normDataSet = np.zeros(np.shape(dataSet))
# 返回dataSet的行数
m = dataSet.shape[0]
# 原始值减去最小值
normDataSet = dataSet - np.tile(minVals, (m, 1))
# 除以最大和最小值的差,得到归一化数据
normDataSet = normDataSet / np.tile(ranges, (m, 1))
# 返回归一化数据结果,数据范围,最小值
return normDataSet, ranges, minVals
'''
函数说明:分类器测试函数
Parameters:
无
Returns:
normDataSet - 归一化后的特征矩阵
ranges - 数据范围
minVals - 数据最小值
'''
def datingClassTest():
# 打开的文件名
filename = "datingTestSet.txt"
# 打开并处理数据
datingDataMat, datingLabels = file2matrix(filename)
# 取所有数据的百分之十
hoRatio = 0.10
# 数据归一化,返回归一化后的矩阵,数据范围,数据最小值
normMat, ranges, minVals = autoNorm(datingDataMat)
# 获得normMat的行数
m = normMat.shape[0]
# 百分之十的测试数据的个数
numTestVecs = int(m * hoRatio)
# 分类错误计数
errorCount = 0.0
for i in range(numTestVecs):
# 前numTestVecs个数据作为测试集,后m-numTestVecs个数据作为训练集
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],4)
print("分类结果:%d\t真实类别:%d" % (classifierResult, datingLabels[i]))
if classifierResult != datingLabels[i]:
errorCount += 1.0
print("错误率:%f%%" % (errorCount / float(numTestVecs) * 100))
'''
函数说明:main函数
Parameters:
无
Returns:
无
'''
if __name__ == '__main__':
datingClassTest()
从图2.5验证分类器结果中可以看出,错误率是3%,这是一个想当不错的结果。我们可以改变函数datingClassTest内变量hoRatio和分类器k的值,检测错误率是否随着变量值的变化而增加。依赖于分类算法、数据集和程序设置,分类器的输出结果可能有很大的不同。
我们可以给海伦一个小段程序,通过该程序海伦会在约会网站上找到某个人并输入他的信息。程序会给出她对男方喜欢程度的预测值。
在kNN_test02.py文件中创建函数classifyPerson,代码如下:
# * coding:utf-8_*_
# 作者 :XiangLin
# 创建时间 :24/02/2020 18:09
# 文件 :KNN_test06.py
# IDE :PyCharm
import numpy as np
import operator
'''
函数说明:kNN算法,分类器
Parameters:
inX - 用于分类的数据(测试集)
dataSet - 用于训练的数据(训练集)
labes - 分类标签
k - kNN算法参数,选择距离最小的k个点
Returns:
sortedClassCount[0][0] - 分类结果
'''
def classify0(inX, dataSet, labels, k):
# numpy函数shape[0]返回dataSet的行数
dataSetSize = dataSet.shape[0]
# 在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
# 二维特征相减后平方
sqDiffMat = diffMat ** 2
# sum()所有元素相加,sum(0)列相加,sum(1)行相加
sqDistance = sqDiffMat.sum(axis=1)
# 开方,计算出距离
distances = sqDistance ** 0.5
# 返回distances中元素从小到大排序后的索引值
sortedDistIndices = distances.argsort()
# 定一个记录类别次数的字典
classCount = {}
for i in range(k):
# 取出前k个元素的类别
voteIlabel = labels[sortedDistIndices[i]]
# dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
# 计算类别次数
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
# python3中用items()替换python2中的iteritems()
# key=operator.itemgetter(1)根据字典的值进行排序
# key=operator.itemgetter(0)根据字典的键进行排序
# reverse降序排序字典
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
# 返回次数最多的类别,即所要分类的类别
return sortedClassCount[0][0]
'''
函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力
Parameters:
filename - 文件名
Returns:
returnMat - 特征矩阵
classLabelVector - 分类Label向量
'''
def file2matrix(filename):
# 打开文件
fr = open(filename)
# 读取文件所有内容
arrayOLines = fr.readlines()
# 得到文件行数
numberOfLines = len(arrayOLines)
# 返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
returnMat = np.zeros((numberOfLines, 3))
# print(returnMat)
# 返回的分类标签向量
classLabelVector = []
# 行的索引值
index = 0
for line in arrayOLines:
# s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
line = line.strip()
# 使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
listFormLine = line.split('\t')
# 将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
returnMat[index, :] = listFormLine[0:3]
# 根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
if listFormLine[-1] == 'didntLike':
classLabelVector.append(1)
elif listFormLine[-1] == 'smallDoses':
classLabelVector.append(2)
elif listFormLine[-1] == 'largeDoses':
classLabelVector.append(3)
index += 1
return returnMat, classLabelVector
'''
函数说明:对数据进行归一化
Parameters:
dataSet - 特征矩阵
Returns:
normDataSet - 归一化后的特征矩阵
ranges - 数据范围
minVals - 数据最小值
'''
def autoNorm(dataSet):
# 获得数据的最小值
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
# 最大值和最小值的范围
ranges = maxVals - minVals
# shape(dataSet)返回dataSet的矩阵行列数
normDataSet = np.zeros(np.shape(dataSet))
# 返回dataSet的行数
m = dataSet.shape[0]
# 原始值减去最小值
normDataSet = dataSet - np.tile(minVals, (m, 1))
# 除以最大和最小值的差,得到归一化数据
normDataSet = normDataSet / np.tile(ranges, (m, 1))
# 返回归一化数据结果,数据范围,最小值
return normDataSet, ranges, minVals
'''
函数说明:通过输入一个人的三维特征,进行分类输出
Parameters:
无
Returns:
无
'''
def classifyPerson():
#输出结果
resultList = ['讨厌','有些喜欢','非常喜欢']
# 三维特征用户输入
precentTats = float(input("玩视频游戏所耗时间百分比:"))
ffMiles = float(input("每年获得的飞行常客里程数:"))
iceCream = float(input("每周消费的冰激淋公升数:"))
# 打开的文件名
filename = "datingTestSet.txt"
# 打开并处理数据
datingDataMat, datingLabels = file2matrix(filename)
# 训练集归一化
normMat, ranges, minVals = autoNorm(datingDataMat)
# 生成NumPy数组,测试集
inArr = np.array([ffMiles, precentTats, iceCream])
# 测试集归一化
norminArr = (inArr - minVals) / ranges
# 返回分类结果
classifierResult = classify0(norminArr,normMat,datingLabels,3)
# 打印结果
print("你可能%s这个人" % (resultList[classifierResult - 1]))
'''
函数说明:main函数
Parameters:
无
Returns:
无
'''
if __name__ == '__main__':
classifyPerson()
在cmd中,运行程序,并输入数据(20,55500,0.6),预测结果是"你可能有些喜欢这个人",也就是这个人魅力一般。一共有三个档次:讨厌、有些喜欢、非常喜欢,对应着不喜欢的人、魅力一般的人、极具魅力的人。结果如图2.6所示。
个人微信公众号,专注于学习资源、笔记分享。我们一起成长,一起学习。一直纯真着,善良着,温情地热爱生活。
数据链接:https://pan.baidu.com/s/1AeZf-mDrTWpoPYA2LJKhig
提取码:0ljj