- 深度学习实战:基于嵌入模型的AI应用开发
AIGC应用创新大全
AI人工智能与大数据应用开发MCP&Agent云算力网络人工智能深度学习ai
深度学习实战:基于嵌入模型的AI应用开发关键词:嵌入模型(EmbeddingModel)、深度学习、向量空间、语义表示、AI应用开发、相似性搜索、迁移学习摘要:本文将带你从0到1掌握基于嵌入模型的AI应用开发全流程。我们会用“翻译机”“数字身份证”等生活比喻拆解嵌入模型的核心原理,结合Python代码实战(BERT/CLIP模型)演示如何将文本、图像转化为可计算的语义向量,并通过“智能客服问答”“
- Objective-C面向对象编程:类、对象、方法详解(保姆级教程)
帅次
iOSObj-Cobjective-ciosiphonesafariswiftmacosflutter
目录一、核心概念二、类的定义(分.h和.m文件)1.头文件(.h)——公开声明2.实现文件(.m)——具体实现3.属性特性解析原子性所有权语义(ARC环境下)读写控制三、对象创建与内存管理1.创建对象的两种方式2.关键步骤解析3.instancetype四、方法调用(消息传递机制)1.基本语法2.关键概念五、self与super关键字六、动手实践:完整工作流1.创建Person对象并调用方法2.项
- 从零开始理解零样本学习:AI人工智能必学技术
AI天才研究院
AgenticAI实战AI人工智能与大数据AI大模型企业级应用开发实战ai
从零开始理解零样本学习:AI人工智能必学技术关键词:零样本学习、人工智能、机器学习、知识迁移、语义嵌入摘要:本文旨在全面深入地介绍零样本学习这一在人工智能领域具有重要意义的技术。首先阐述零样本学习的背景和基本概念,通过详细的解释和直观的示意图让读者建立起对零样本学习的初步认识。接着深入剖析其核心算法原理,结合Python代码进行详细说明,同时引入相关数学模型和公式并举例阐释。通过项目实战部分,带领
- ResNet(Residual Network)
不想秃头的程序
神经网络语音识别人工智能深度学习网络残差网络神经网络
ResNet(ResidualNetwork)是深度学习中一种经典的卷积神经网络(CNN)架构,由微软研究院的KaimingHe等人在2015年提出。它通过引入残差连接(SkipConnection)解决了深度神经网络中的梯度消失问题,使得网络可以训练极深的模型(如上百层),并在图像分类、目标检测、语义分割等任务中取得了突破性成果。以下是ResNet的详细介绍:一、核心思想ResNet的核心创新是
- AWS Lambda与RDS连接优化之旅
t0_54manong
编程问题解决手册aws云计算个人开发
在云计算的时代,AWSLambda与RDS的结合为开发者提供了高效且灵活的解决方案。然而,在实际应用中,我们常常会遇到一些性能瓶颈。本文将通过一个真实案例,探讨如何优化AWSLambda与RDS之间的连接,以提高API的响应速度。背景介绍最近,我们在AWS上部署了一个使用Dotnet6开发的API,它通过APIGateway暴露给外部,并连接到同VPC内的MySQLAuroraRDS数据库。部署前
- 【RAG面试题】如何获取准确的语义表示
目录回答模板语义表示是干什么的?如何获取准确语义表示的关键步骤?1.选择合适的Embedding模型2.正确的文本预处理与切分3.文本清洗与标准化4.构建合理的向量库5.检索质量验证与优化详细知识点覆盖面试回答技巧回答模板在RAG中,准确的语义表示直接影响检索相关性。通常会从以下几方面确保语义表示准确:选择高质量的嵌入模型,如bge-m3或text-embedding-v1;正确的预处理和切分:采
- Apache Flink深度解析:现代流处理引擎
暴躁哥
大数据技术apacheflink大数据
好的,我来帮您写一篇关于Flink技术的详细介绍博客:ApacheFlink深度解析:现代流处理引擎一、Flink简介ApacheFlink是一个开源的分布式流处理和批处理统一计算引擎。它提供了数据流上的状态计算、精确一次性语义保证、高吞吐、低延迟等特性,能够运行在所有常见的集群环境中。1.1核心特性统一的流批处理精确一次性语义事件时间处理有状态计算高吞吐和低延迟高可用性配置内存管理二、Flink
- Python爬虫实战:研究jieba相关技术
ylfhpy
爬虫项目实战python爬虫开发语言htmljieba分词
1.引言1.1研究背景与意义随着互联网技术的飞速发展,网络新闻已成为人们获取信息的主要渠道之一。每天产生的新闻文本数据量呈爆炸式增长,如何从海量文本中高效提取有价值的信息,成为信息科学领域的重要研究课题。文本分析技术通过对文本内容的结构化处理和语义挖掘,能够揭示隐藏在文本中的主题、情感和趋势,为舆情监测、信息检索、内容推荐等应用提供技术支持。1.2研究目标与方法本研究旨在构建一个完整的新闻文本分析
- 【云原生】Docker 部署 Elasticsearch 9 操作详解
逆风飞翔的小叔
运维Docker部署es9Docker部署esDocker搭建es9Elasticsearch9Docker搭建es
目录一、前言二、Elasticsearch9新特性介绍2.1基于Lucene10重大升级2.2BetterBinaryQuantization(BBQ)2.3ElasticDistributionsofOpenTelemetry(EDOT)2.4LLM可观测性2.5攻击发现与自动导入2.6ES|QL增强2.7语义检索三、基于Docker部署Elasticsearch93.1Elasticsearc
- PNAS顶刊:使用 GPT-4 揭示概念的语义
GaëlLeMens、BalázsKovács、MichaelT.HannanandGuillemPros合作的题为“UncoveringthesemanticsofconceptsusingGPT-4”的文章,发表于ProceedingsoftheNationalAcademyofSciences。摘要最近的大型语言模型(LLM),如GPT-3.5和GPT-4生成类似人类的文本的能力表明,社会科
- C++智能指针概念理解的面试题
xgbing
[C/C++]c++机器学习人工智能自动驾驶
C++智能指针概念理解的面试题第一部分:基础概念解释std::unique_ptr和std::shared_ptr在以下方面的区别:所有权语义性能开销自定义删除器的存储方式是否支持数组类型答案:所有权语义:unique_ptr:独占所有权,不能复制,只能移动shared_ptr:共享所有权,通过引用计数管理,可以复制性能开销:unique_ptr:几乎无额外开销(等同于原始指针)shared_pt
- 从零开始理解零样本学习:AI人工智能必学技术
AI学长带你学AI
学习人工智能ai
从零开始理解零样本学习:AI人工智能必学技术关键词:零样本学习、跨模态映射、语义空间、AI泛化能力、大模型、少样本学习、数据效率摘要:传统AI需要“见多识广”才能识别新事物,但现实中很多场景(如稀有物种、冷门物品)缺乏足够数据。零样本学习(Zero-ShotLearning,ZSL)就像AI的“推理翻译官”,能让机器通过“文字描述”理解“没见过的图片”。本文将用“认新单词”的生活故事,一步步拆解零
- 【面试宝典】【大模型入门】【模型微调】
曾小文
人工智能深度学习机器学习
面试热点科普:监督微调vs无监督微调,有啥不一样?在大模型时代(比如BERT、GPT)里,我们经常听到“预训练+微调”的范式。但你可能会疑惑——监督微调、无监督微调,到底有啥区别?用的场景一样吗?今天这篇,带你5分钟搞懂这对“孪生兄弟”的异同✅1.术语定义名称定义说明预训练(Pretraining)在大规模通用数据上训练模型,学习“通用知识”,比如语言规律、语义表示。微调(Fine-tuning)
- 从TCP到MQTT再到HTTP:一文读懂网络协议的核心差异与关系
豆豆(前端开发+ui设计)
网络协议tcp/iphttp
TCP、MQTT、HTTP是网络通信中不同层次的协议,它们在功能和应用场景上有显著区别,同时也存在一定的关联。以下是它们的详细对比和关系说明:1.TCP(传输控制协议)定位:传输层协议(OSI第4层)。作用:提供可靠的、面向连接的数据传输,确保数据按序到达、不丢失、不重复。特点:三次握手建立连接,四次挥手断开连接。流量控制、拥塞控制机制。无应用层语义(仅传输字节流,不关心内容)。典型应用:作为底层
- FastMCP 2.9 版本详解:MCP 原生中间件与类型转换增强
炼丹上岸
中间件人工智能pythonfastapiMCPfastmcp
下面我将从三个方面来讲解这个,第一是讲解2.9版本的更新,第二是讲解什么将手动解析底层JSON-RPC消息,丢失FastMCP高层语义,第三是讲一讲,什么叫做中间件。不了解的兄弟们系好安全带,我们准备发车了!一、中间件系统的革命性升级1.传统中间件方案的痛点局限性:仅支持web传输(如HTTP、SSE),无法用于本地STDIO传输需手动解析底层JSON-RPC消息,丢失FastMCP高层语义(如T
- 使用LangChain与Solar进行文本嵌入
Zbb159
langchain
使用LangChain与Solar进行文本嵌入在处理自然语言处理中,文本嵌入是将文本转换为数字向量的一种技术,它使计算机能够理解和处理文本数据。在这篇文章中,我们将探索如何使用LangChain与Solar进行文本嵌入。技术背景介绍文本嵌入可以用于多种自然语言处理任务,例如文本分类、情感分析和语义搜索等。Solar是一种简单易用的嵌入服务,提供了强大的推理能力,可以轻松地将文本转换为嵌入向量。核心
- 69、Flink 的 DataStream Connector 之 Kafka 连接器详解
猫猫爱吃小鱼粮
Flink-1.19从0到精通flinkkafka大数据
1.概述Flink提供了Kafka连接器使用精确一次(Exactly-once)的语义在Kafkatopic中读取和写入数据。目前还没有Flink1.19可用的连接器。2.KafkaSourcea)使用方法KafkaSource提供了构建类来创建KafkaSource的实例。以下代码片段展示了如何构建KafkaSource来消费“input-topic”最早位点的数据,使用消费组“my-group
- 预训练语言模型
lynnzon
语言模型人工智能自然语言处理
1.1Encoder-onlyPLMEncoder-only架构是Transformer的重要分支,专注于自然语言理解(NLU)任务,核心代表是BERT及其优化模型(RoBERTa、ALBERT)。其特点是:仅使用Encoder层:堆叠多层TransformerEncoder,捕捉文本双向语义。预训练任务:通过掩码语言模型(MLM)学习上下文依赖。应用场景:文本分类、实体识别、语义匹配等NLU任务
- Java:Spi 小实战
weixin_34248118
java数据库
背景Java中区分Api和Spi,通俗的讲:Api和Spi都是相对的概念,他们的差别只在语义上,Api直接被应用开发人员使用,Spi被框架扩张人员使用,详细内容可以看:http://www.cnblogs.com/happyframework/p/3325560.html。Java类库中的实例代码1Class.forName("com.mysql.jdbc.Driver");2Connection
- 第8章:智能菜谱生成器——语言模型如何解析烹饪秘方
白嫖不白嫖
深度求索-DeepSeek语言模型人工智能自然语言处理
第8章:智能菜谱生成器——语言模型如何解析烹饪秘方从语义理解到操作执行的完整技术解密工业案例背景:法国里昂的Bocused’Or国际烹饪大赛选手手册中记载这样一道经典指令:“将酱汁熬煮至Nappé状态(即勺子划过痕迹缓慢回填)”。当传统NLP系统将其简单译为"煮浓",新一代Transformer模型却精准解析出粘度为1500-2000cP的物性指标,并据此生成控温方案。这背后的核心技术便是基于烹饪
- WebRTC 语音激活检测(VAD)算法
u013250861
Audiowebrtc算法语音识别
语音激活检测最早应用于电话传输和检测系统当中,用于通信信道的时间分配,提高传输线路的利用效率。激活检测属于语音处理系统的前端操作,在语音检测领域意义重大。但是目前的语音激活检测,尤其是检测人声开始和结束的端点始终是属于技术难点,各家公司始终处于能判断,但是不敢保证判别准确性的阶段。通常搭建机器人聊天系统主要包括以下三个方面:语音转文字(ASR/STT)语义内容(NLU/NLP)文字转语音(TTS)
- VINS-Mono 开源项目安装与使用指南
劳丽娓Fern
VINS-Mono开源项目安装与使用指南VINS-Mono项目地址:https://gitcode.com/gh_mirrors/vi/VINS-MonoVINS-Mono是一个专为单目视觉惯性系统设计的实时SLAM框架,旨在提供高精度的视觉惯性里程计。本指南将带你深入了解其目录结构、启动文件以及配置文件,帮助你快速上手并应用此项目。目录结构及介绍VINS-Mono的项目结构清晰地组织了不同的组件
- 【深度学习加速探秘】Winograd 卷积算法:让计算效率 “飞” 起来
heimeiyingwang
算法深度学习算法人工智能
一、为什么需要Winograd卷积算法?从“卷积计算瓶颈”说起在深度学习领域,卷积神经网络(CNN)被广泛应用于图像识别、目标检测、语义分割等任务。然而,卷积操作作为CNN的核心计算单元,其计算量巨大,消耗大量的时间和计算资源。随着模型规模不断增大,传统卷积算法的计算效率成为限制深度学习发展的一大瓶颈。Winograd卷积算法的出现,犹如一把利刃,直击传统卷积计算的痛点。它通过巧妙的数学变换,大幅
- 从零构建企业知识库问答系统(基于通义灵码+RAG+阿里云OSS的落地实践)
大熊计算机
开发实战阿里云云计算
1企业知识管理在大型企业环境中,知识管理面临三大痛点:信息孤岛(40%的企业知识分散在10+个系统中)、检索低效(员工平均每周浪费3.5小时查找信息)和知识流失(专家离职导致关键经验断层)。传统解决方案如Wiki或文档管理系统存在两大局限:被动检索:用户需精确知道搜索关键词理解缺失:无法解析"季度营收增长率计算方法"等复合问题RAG(检索增强生成)技术的革命性在于将语义检索与大语言模型结合:用户问
- Word2Vec 原理是什么
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythonword2vec人工智能自然语言处理
Word2Vec原理是什么一、核心概念:从词语到向量的语义映射Word2Vec是2013年由Google提出的词嵌入(WordEmbedding)模型,其核心目标是将自然语言中的词语转换为稠密的连续向量(词向量),使向量空间中的距离能反映词语的语义相关性。本质:通过神经网络学习词语的分布式表示(DistributedRepresentation),打破传统one-hot编码“维度高、无语义关联”的
- 预训练目标:BERT 更适配 “理解类” 任务
在NLP任务中,更倾向于用BERT而非GPT做预训练,核心原因与两者的模型设计、任务适配性、资源成本有关,具体可从以下维度拆解:一、预训练目标:BERT更适配“理解类”任务BERT的双向预训练目标:通过掩码语言模型(MLM)和下一句预测(NSP),强制模型学习上下文的双向语义依赖(比如用“[MASK]是水果”的前后文猜“苹果”),天生适合文本理解、分类、问答等任务。GPT的单向预训练目标:基于自回
- H5新增的标签
YiLin_Classics
web前端html前端csscss3
H5新增的内容语义化标签增强型表单增强表单中的新增属性CSS3的选择器语义化标签H5新增的语义化标签有:1)header--------头部区域2)footer----------尾部区域3)section--------主体区域4)main----------主要区域内容5)article--------独立文章区域6)aside--------侧边栏7)nav----------导航区域8)f
- AI智能时代SEO优化,AISEO-人工智能搜索引擎优化
weixin_ggwwsscc
人工智能搜索引擎deepseekAIseo
AI驱动的关键词精准匹配与语义理解传统的关键词排名规则主要依赖于关键词的字面匹配,即网站内容中出现的关键词与用户搜索词完全一致或高度相似时,才有可能获得较好的排名。然而,随着AI技术在搜索引擎中的广泛应用,这一局面正在发生深刻改变。如今的搜索引擎借助自然语言处理(NLP)和机器学习算法,能够深入理解用户搜索词背后的语义和意图,实现更精准的内容匹配。AI智能时代SEO优化,AISEO-人工智能搜索引
- Mysql中isnull,ifnull,nullif的用法
在MySQL中,ISNULL、IFNULL和NULLIF都与空值(NULL)的判断或处理有关,但它们的用途和语义不同1.ISNULL(expr)→判断是否为NULL功能:返回1(真)如果表达式为NULL,否则返回0(假)示例:SELECTISNULL(NULL);--结果:1SELECTISNULL(123);--结果:0SELECTISNULL(name)FROMusers;2.IFNULL(e
- 多模态查询技术:让搜索更智能、更精准
搜索引擎技术
ai
多模态查询技术:让搜索更智能、更精准关键词:多模态查询、跨模态搜索、语义理解、向量检索、深度学习、信息检索、人工智能摘要:本文深入探讨多模态查询技术如何通过整合文本、图像、音频等多种数据形式,实现更智能、更精准的搜索体验。我们将从基础概念出发,逐步解析技术原理,并通过实际案例展示其应用价值,最后展望未来发展趋势。背景介绍目的和范围本文旨在全面介绍多模态查询技术,包括其核心概念、工作原理、实现方法和
- java解析APK
3213213333332132
javaapklinux解析APK
解析apk有两种方法
1、结合安卓提供apktool工具,用java执行cmd解析命令获取apk信息
2、利用相关jar包里的集成方法解析apk
这里只给出第二种方法,因为第一种方法在linux服务器下会出现不在控制范围之内的结果。
public class ApkUtil
{
/**
* 日志对象
*/
private static Logger
- nginx自定义ip访问N种方法
ronin47
nginx 禁止ip访问
因业务需要,禁止一部分内网访问接口, 由于前端架了F5,直接用deny或allow是不行的,这是因为直接获取的前端F5的地址。
所以开始思考有哪些主案可以实现这样的需求,目前可实施的是三种:
一:把ip段放在redis里,写一段lua
二:利用geo传递变量,写一段
- mysql timestamp类型字段的CURRENT_TIMESTAMP与ON UPDATE CURRENT_TIMESTAMP属性
dcj3sjt126com
mysql
timestamp有两个属性,分别是CURRENT_TIMESTAMP 和ON UPDATE CURRENT_TIMESTAMP两种,使用情况分别如下:
1.
CURRENT_TIMESTAMP
当要向数据库执行insert操作时,如果有个timestamp字段属性设为
CURRENT_TIMESTAMP,则无论这
- struts2+spring+hibernate分页显示
171815164
Hibernate
分页显示一直是web开发中一大烦琐的难题,传统的网页设计只在一个JSP或者ASP页面中书写所有关于数据库操作的代码,那样做分页可能简单一点,但当把网站分层开发后,分页就比较困难了,下面是我做Spring+Hibernate+Struts2项目时设计的分页代码,与大家分享交流。
1、DAO层接口的设计,在MemberDao接口中定义了如下两个方法:
public in
- 构建自己的Wrapper应用
g21121
rap
我们已经了解Wrapper的目录结构,下面可是正式利用Wrapper来包装我们自己的应用,这里假设Wrapper的安装目录为:/usr/local/wrapper。
首先,创建项目应用
&nb
- [简单]工作记录_多线程相关
53873039oycg
多线程
最近遇到多线程的问题,原来使用异步请求多个接口(n*3次请求) 方案一 使用多线程一次返回数据,最开始是使用5个线程,一个线程顺序请求3个接口,超时终止返回 缺点 测试发现必须3个接
- 调试jdk中的源码,查看jdk局部变量
程序员是怎么炼成的
jdk 源码
转自:http://www.douban.com/note/211369821/
学习jdk源码时使用--
学习java最好的办法就是看jdk源代码,面对浩瀚的jdk(光源码就有40M多,比一个大型网站的源码都多)从何入手呢,要是能单步调试跟进到jdk源码里并且能查看其中的局部变量最好了。
可惜的是sun提供的jdk并不能查看运行中的局部变量
- Oracle RAC Failover 详解
aijuans
oracle
Oracle RAC 同时具备HA(High Availiablity) 和LB(LoadBalance). 而其高可用性的基础就是Failover(故障转移). 它指集群中任何一个节点的故障都不会影响用户的使用,连接到故障节点的用户会被自动转移到健康节点,从用户感受而言, 是感觉不到这种切换。
Oracle 10g RAC 的Failover 可以分为3种:
1. Client-Si
- form表单提交数据编码方式及tomcat的接受编码方式
antonyup_2006
JavaScripttomcat浏览器互联网servlet
原帖地址:http://www.iteye.com/topic/266705
form有2中方法把数据提交给服务器,get和post,分别说下吧。
(一)get提交
1.首先说下客户端(浏览器)的form表单用get方法是如何将数据编码后提交给服务器端的吧。
对于get方法来说,都是把数据串联在请求的url后面作为参数,如:http://localhost:
- JS初学者必知的基础
百合不是茶
js函数js入门基础
JavaScript是网页的交互语言,实现网页的各种效果,
JavaScript 是世界上最流行的脚本语言。
JavaScript 是属于 web 的语言,它适用于 PC、笔记本电脑、平板电脑和移动电话。
JavaScript 被设计为向 HTML 页面增加交互性。
许多 HTML 开发者都不是程序员,但是 JavaScript 却拥有非常简单的语法。几乎每个人都有能力将小的
- iBatis的分页分析与详解
bijian1013
javaibatis
分页是操作数据库型系统常遇到的问题。分页实现方法很多,但效率的差异就很大了。iBatis是通过什么方式来实现这个分页的了。查看它的实现部分,发现返回的PaginatedList实际上是个接口,实现这个接口的是PaginatedDataList类的对象,查看PaginatedDataList类发现,每次翻页的时候最
- 精通Oracle10编程SQL(15)使用对象类型
bijian1013
oracle数据库plsql
/*
*使用对象类型
*/
--建立和使用简单对象类型
--对象类型包括对象类型规范和对象类型体两部分。
--建立和使用不包含任何方法的对象类型
CREATE OR REPLACE TYPE person_typ1 as OBJECT(
name varchar2(10),gender varchar2(4),birthdate date
);
drop type p
- 【Linux命令二】文本处理命令awk
bit1129
linux命令
awk是Linux用来进行文本处理的命令,在日常工作中,广泛应用于日志分析。awk是一门解释型编程语言,包含变量,数组,循环控制结构,条件控制结构等。它的语法采用类C语言的语法。
awk命令用来做什么?
1.awk适用于具有一定结构的文本行,对其中的列进行提取信息
2.awk可以把当前正在处理的文本行提交给Linux的其它命令处理,然后把直接结构返回给awk
3.awk实际工
- JAVA(ssh2框架)+Flex实现权限控制方案分析
白糖_
java
目前项目使用的是Struts2+Hibernate+Spring的架构模式,目前已经有一套针对SSH2的权限系统,运行良好。但是项目有了新需求:在目前系统的基础上使用Flex逐步取代JSP,在取代JSP过程中可能存在Flex与JSP并存的情况,所以权限系统需要进行修改。
【SSH2权限系统的实现机制】
权限控制分为页面和后台两块:不同类型用户的帐号分配的访问权限是不同的,用户使
- angular.forEach
boyitech
AngularJSAngularJS APIangular.forEach
angular.forEach 描述: 循环对obj对象的每个元素调用iterator, obj对象可以是一个Object或一个Array. Iterator函数调用方法: iterator(value, key, obj), 其中obj是被迭代对象,key是obj的property key或者是数组的index,value就是相应的值啦. (此函数不能够迭代继承的属性.)
- java-谷歌面试题-给定一个排序数组,如何构造一个二叉排序树
bylijinnan
二叉排序树
import java.util.LinkedList;
public class CreateBSTfromSortedArray {
/**
* 题目:给定一个排序数组,如何构造一个二叉排序树
* 递归
*/
public static void main(String[] args) {
int[] data = { 1, 2, 3, 4,
- action执行2次
Chen.H
JavaScriptjspXHTMLcssWebwork
xwork 写道 <action name="userTypeAction"
class="com.ekangcount.website.system.view.action.UserTypeAction">
<result name="ssss" type="dispatcher">
- [时空与能量]逆转时空需要消耗大量能源
comsci
能源
无论如何,人类始终都想摆脱时间和空间的限制....但是受到质量与能量关系的限制,我们人类在目前和今后很长一段时间内,都无法获得大量廉价的能源来进行时空跨越.....
在进行时空穿梭的实验中,消耗超大规模的能源是必然
- oracle的正则表达式(regular expression)详细介绍
daizj
oracle正则表达式
正则表达式是很多编程语言中都有的。可惜oracle8i、oracle9i中一直迟迟不肯加入,好在oracle10g中终于增加了期盼已久的正则表达式功能。你可以在oracle10g中使用正则表达式肆意地匹配你想匹配的任何字符串了。
正则表达式中常用到的元数据(metacharacter)如下:
^ 匹配字符串的开头位置。
$ 匹配支付传的结尾位置。
*
- 报表工具与报表性能的关系
datamachine
报表工具birt报表性能润乾报表
在选择报表工具时,性能一直是用户关心的指标,但是,报表工具的性能和整个报表系统的性能有多大关系呢?
要回答这个问题,首先要分析一下报表的处理过程包含哪些环节,哪些环节容易出现性能瓶颈,如何优化这些环节。
一、报表处理的一般过程分析
1、用户选择报表输入参数后,报表引擎会根据报表模板和输入参数来解析报表,并将数据计算和读取请求以SQL的方式发送给数据库。
2、
- 初一上学期难记忆单词背诵第一课
dcj3sjt126com
wordenglish
what 什么
your 你
name 名字
my 我的
am 是
one 一
two 二
three 三
four 四
five 五
class 班级,课
six 六
seven 七
eight 八
nince 九
ten 十
zero 零
how 怎样
old 老的
eleven 十一
twelve 十二
thirteen
- 我学过和准备学的各种技术
dcj3sjt126com
技术
语言VB https://msdn.microsoft.com/zh-cn/library/2x7h1hfk.aspxJava http://docs.oracle.com/javase/8/C# https://msdn.microsoft.com/library/vstudioPHP http://php.net/manual/en/Html
- struts2中token防止重复提交表单
蕃薯耀
重复提交表单struts2中token
struts2中token防止重复提交表单
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月12日 11:52:32 星期日
ht
- 线性查找二维数组
hao3100590
二维数组
1.算法描述
有序(行有序,列有序,且每行从左至右递增,列从上至下递增)二维数组查找,要求复杂度O(n)
2.使用到的相关知识:
结构体定义和使用,二维数组传递(http://blog.csdn.net/yzhhmhm/article/details/2045816)
3.使用数组名传递
这个的不便之处很明显,一旦确定就是不能设置列值
//使
- spring security 3中推荐使用BCrypt算法加密密码
jackyrong
Spring Security
spring security 3中推荐使用BCrypt算法加密密码了,以前使用的是md5,
Md5PasswordEncoder 和 ShaPasswordEncoder,现在不推荐了,推荐用bcrpt
Bcrpt中的salt可以是随机的,比如:
int i = 0;
while (i < 10) {
String password = "1234
- 学习编程并不难,做到以下几点即可!
lampcy
javahtml编程语言
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- 架构师之mysql----------------用group+inner join,left join ,right join 查重复数据(替代in)
nannan408
right join
1.前言。
如题。
2.代码
(1)单表查重复数据,根据a分组
SELECT m.a,m.b, INNER JOIN (select a,b,COUNT(*) AS rank FROM test.`A` A GROUP BY a HAVING rank>1 )k ON m.a=k.a
(2)多表查询 ,
使用改为le
- jQuery选择器小结 VS 节点查找(附css的一些东西)
Everyday都不同
jquerycssname选择器追加元素查找节点
最近做前端页面,频繁用到一些jQuery的选择器,所以特意来总结一下:
测试页面:
<html>
<head>
<script src="jquery-1.7.2.min.js"></script>
<script>
/*$(function() {
$(documen
- 关于EXT
tntxia
ext
ExtJS是一个很不错的Ajax框架,可以用来开发带有华丽外观的富客户端应用,使得我们的b/s应用更加具有活力及生命力。ExtJS是一个用 javascript编写,与后台技术无关的前端ajax框架。因此,可以把ExtJS用在.Net、Java、Php等各种开发语言开发的应用中。
ExtJs最开始基于YUI技术,由开发人员Jack
- 一个MIT计算机博士对数学的思考
xjnine
Math
在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进。为什么要深入数学的世界?作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅程。我的导师最初希望我去做的题目,是对appe