C++并发编程实战读书笔记 (一)

避免恶性条件竞争


这里提供一些方法来解决恶性条件竞争,最简单的办法就是对数据结构采用某种保护机制,确保只有进行修改的线程才能看到不变量被破坏时的中间状态。从其他访问线程的角度来看,修改不是已经完成了,就是还没开始。C++标准库提供很多类似的机制,下面会逐一介绍。

另一个选择是对数据结构和不变量的设计进行修改,修改完的结构必须能完成一系列不可分割的变化,也就是保证每个不变量保持稳定的状态,这就是所谓的无锁编程(lock-free programming)。不过,这种方式很难得到正确的结果。如果到这个级别,无论是内存模型上的细微差异,还是线程访问数据的能力,都会让工作变的复杂。内存模型将在第5章讨论,无锁编程将在第7章讨论。

另一种处理条件竞争的方式是,使用事务(transacting)的方式去处理数据结构的更新(这里的"处理"就如同对数据库进行更新一样)。所需的一些数据和读取都存储在事务日志中,然后将之前的操作合为一步,再进行提交。当数据结构被另一个线程修改后,或处理已经重启的
情况下,提交就会无法进行,这称作为“软件事务内存”(software transactional memory(STM))。理论研究中,这是一个很热门的研究领域。这个概念将不会在本书中再进行介绍,因为在C++中没有对STM进行直接支持。但是,基本思想会在后面提及。

保护共享数据结构的最基本的方式,是使用C++标准库提供的互斥量(mutex)。互斥量是C++中一种最通用的数据保护机制,但它不是“银弹”;精心组织代码来保护正确的数据(见3.2.2节),并在接口内部避免竞争条件(见3.2.3节)是非常重要的。但互斥量自身也有问题,也会造成死锁(见3.2.4节),或是对数据保护的太多(或太少)(见3.2.8节)。

你可能感兴趣的:(C++并发编程实战)