进程--摘自《深入理解计算机系统 2nd》第8章 异常控制流
进程提供给应用程序的关键抽象:
虚拟存储器
虚拟存储器是硬件异常、硬件地址翻译、主存、磁盘文件和内核软件的完美交互,它为每个进程提供了一个大的、一致的和私有的地址空间。通过一个很清晰的机制,虚拟存储器提供了三个重要的能力:
(1)它将主存看成是一个存储在磁盘上的地址空间的高速缓存,在主存中只保存活动区域,并根据需要在磁盘和主存之间来回传送数据,通过这种方式,它高效地使用了主存。
(2)它为每个进程提供了一致的地址空间,从而简化了存储器管理。
(3)它保护了每个进程的地址空间不被其他进程破坏。
物理和虚拟寻址
物理寻址
计算机系统的主存被组织成一个由M个连续的字节大小的单元组成的数组。每字节都有一个唯一的物理地址(Physical Address,PA)。第一个字节的地址为0,接下来的字节的地址为1,再下一个为2,依此类推。给定这种简单的结构,CPU访问存储器的最自然的方式就是使用物理地址,我们把这种方式称为物理寻址。
虚拟寻址
使用虚拟寻址时,CPU通过生成一个虚拟地址(Virtual Address,VA)来访问主存,这个虚拟地址在被送到存储器之前先转换成适当的物理地址。将一个虚拟地址转换为物理地址的任务叫做地址翻译(address translation)。就像异常处理一样,地址翻译需要CPU硬件和操作系统之间的紧密合作。CPU芯片上叫做存储器管理单元(Memory Management Unit,MMU)的专用硬件,利用存放在主存中的查询表来动态翻译虚拟地址,该表的内容是由操作系统管理。
地址空间
地址空间(adress space)是一个非整数地址的有序集合:{0,1,2,...}
如果地址空间中的整数是连续的,那么我们说它是一个线性地址空间(linear address space)。在一个带虚拟存储器的系统中,CPU从一个有N = 2 ^ n个地址空间中生成虚拟地址,这个地址空间称为虚拟地址空间(virtual address space):{0,1,2,3,...,N-1}
一个地址空间的大小是由表示最大地址所需要的倍数来描述的。例如,一个包含N=2^n个地址的虚拟地址空间叫做一个n位地址空间。现在系统典型地支持32位或者64位虚拟地址空间是。
一个系统还有一个物理地址空间(physical addresss space),它与系统中物理存储器的M字节相对应:{0,1,2,...M-1}
M不要求是2的幂,但是为了简化讨论,我们假设M = 2 ^ m。
地址空间的概念是很重要的,因为它清楚地区分了数据对象(字节)和它们的属性(地址)。一旦认识到了这种区别,那么我们就可以将其推广,允许每个数据对象有多个独立的地址,其中每个地址都选自一个不同的地址空间(不连续的意思吗?)。这就是虚拟存储器的基本思想。主存中每个字节都有一个选自虚拟地址空间的虚拟地址和一个选自物理地址空间的物理地址。(这段没怎么看懂~~)
虚拟存储器作为缓存的工具
概念上而言,虚拟存储器(VM)被组织为一个由存放在磁盘上N个连续的字节大小的单元组成的数组。每个字节都有一个唯一的虚拟地址,这个唯一的虚拟地址是作为到数组的索引的。磁盘上的数组的内容被缓存在主存中。和存储器层次结构中其他缓存一样,磁盘(较低层)上的数据被分割成块,这些块作为磁盘和主存(较高层)之间的传输单元。VM系统通过将虚拟存储器分割称为虚拟页(Vitual Page,VP)的大小固定的块来处理这个问题。每个虚拟页的大小为P = 2 ^ n字节。类似地,物理存储器被分割为物理页(Physical Page,PP),大小也为P字节(物理页也称为页帧(page frame))。
在任意时刻,虚拟页面的集合都分为三个不相交的子集:
页表
同任何缓存一样,虚拟存储器系统必须有某种方法来判定一个虚拟页是否存放在DRAM中的某个地方。如果是,系统还必须确定这个虚拟页存放在哪个物理页中。如果不命中,系统必须判断这个虚拟页存放在磁盘的哪个位置,在物理存储器中选择一个牺牲页,并将虚拟页从磁盘拷贝到DRAM中,替换这个牺牲页。
这些功能是由许多软硬件联合提供的,包括操作系统软件,MMU(存储器管理单元)中地址翻译硬件和一个存放在物理存储器中叫做页表(page table)的数据结构,页表将虚拟页映射到物理页。页表就是一个页表条目(Page Table Entry,PTE)的数组。
Linux虚拟存储器系统
Linux为每个进程维持了一个单独的虚拟地址空间。
内核虚拟存储器包含内核中的代码和数据结构。内核虚拟存储器的某些区域被映射到所有进程共享的物理页面。例如,每个进程共享内核的代码和全局数据结构。
1、Linux虚拟存储器区域(Windows下也有区域的概念)
Linux将虚拟存储器组织成一些区域(也叫做段)的集合。一个区域(area)就是已经存在着的(已分配的)虚拟存储器的连续片(chunk),这些页是以某种方式相关联的。例如,代码段、数据段、堆、共享库段,以及用户栈都不同的区域。每个存在的虚拟页面保存在某个区域中,而不属于某个区域的虚拟页是不存在的,并且不能被进程引用。区域的概念很重要,因为它允许虚拟地址空间有间隙。内核不用记录那些不存在的虚拟页,而这样的页也不占用存储器。磁盘或者内核本身的任何额外资源。
内核为系统中的每个进程维护一个单独的任务结构(源代码中的task_struct)。任务结构中的元素包含或者指向内核运行该进程所需要的所有信息(例如,PID,指向用户栈的指针、可执行的目标文件的名字以及程序计数器)。
task_struct中的一个条目指向mm_struct,它描述了虚拟存储器中的当前状态。其中pgd指向第一级页表(页全局目录)的基址,而mmap指向一个vm_area_struct(区域结构)的链表,其中每个vm_area_structs都描述了当前虚拟地址空间的一个区域(area)。当内核运行这个进程时,它就将pgd存放在CR3控制寄存器中。
一个具体区域结构包含下面的字段:
共享对象的关键点在于即使对象被映射到了多个共享区域,物理存储器也只需要存放共享对象的一个拷贝。
一个共享对象(注意,物理页面不一定是连续的。)
私有对象是使用一种叫做写时拷贝(copy-on-write)的巧妙技术被映射到虚拟存储器中的。对于每个映射私有对象的进程,相应私有区域的页表条目都被标记为只读,并且区域结构被标记为私有的写时拷贝。
再看fork函数
当fork函数被当前进程调用时,内核为新进程创建各种数据结构,并分配给它一个唯一的PID。为了给这个新进程创建虚拟存储器,它创建了当前进程的mm_struct、区域结构和页表的原样拷贝。它将两个进程中的每个页面都为标记只读,并将两个进程中的每个区域结构都标记为私有的写时拷贝。
当fork在新进程中返回时,新进程现在的虚拟存储器刚好和调用fork时存在的虚拟存储器相同。当这两个进程中的任一个后来进行写操作时,写时拷贝机制就会创建新页面,因此,也就为每个进程保持了私有地址空间的抽象概念。
再看execve函数
假设运行在当前进程中的程序执行了如下的调用:
execve("a.out",NULL,NULL) ;
execve函数在当前进程中加载并运行包含在可执行目标文件a.out中的程序,用a.out程序有效地替代了当前程序。加载并运行a.out需要以下几个步骤:
#include
#include
void *mmap(void *start,size_t length,int prot,int flags,int fd,off_t offset) ;
//返回:若成功时则为指向映射区域的指针,若出错则为MAP_FAILED(-1)
munmap函数删除虚拟存储器的区域:
#include
#include
int munmap(void *start,size_t length);
//返回:若成功则为0,若出错则为-1