如何检测、清理Greenplum垃圾 - 阿里云HybridDB for PG最佳实践

标签

PostgreSQL , Greenplum , HDB for PG


背景

Greenplum通过多版本支持数据的删除和更新的并发和回滚,在删除数据时(使用DELETE删除),对记录的头部xmax值进行标记。在删除记录时,对记录的头部进行标记,同时插入新的版本。

这一就会导致一个问题,如果用户经常删除和插入或更新数据,表和索引都会膨胀。

PostgreSQL是通过HOT技术以及autovacuum来避免或减少垃圾的。但是Greenplum没有自动回收的worker进程,所以需要人为的触发。

如何查找膨胀的表或索引

Greenplum

1、首先要更新表的统计信息,因为接下来的两个视图是从统计信息来计算膨胀率的。

连接到所有目标库执行:  
  
analyze;  

2、查询gp_toolkit.gp_bloat_diag,膨胀较厉害的表。

Use the gp_toolkit administrative schema:

gp_toolkit.gp_bloat_diag - this view shows tables with moderate and significant amount of bloat

列:

bdirelid - Object ID of the table (pg_class.oid)  
  
bdinspname - table schema name  
  
bdirelname - table name  
  
bdirelpages - number of pages currently in table data files  
  
bdiexppages - number of pages expected according to current statistics  
  
bdidiag - diagnosis of bloat (ratio from 1 to 3 -> no bloat, ratio from 4 to 10 -> moderate bloat, ratio > 10 -> significant bloat)  

例子:

In this example the table "t1" is severely bloated (the calculated data size for data currently in table is 1 page, but table consists of 97 pages).

gpadmin=# select * from gp_toolkit.gp_bloat_diag;  
 bdirelid | bdinspname | bdirelname | bdirelpages | bdiexppages |                bdidiag                  
----------+------------+------------+-------------+-------------+---------------------------------------  
    21488 | public     | t1         |          97 |           1 | significant amount of bloat suspected  
(1 row)  

3、查询gp_toolkit.gp_bloat_expected_pages,所有对象的膨胀明细。

gp_toolkit.gp_bloat_expected_pages - this view shows the page data (current pages/expected pages) for all tables in the database Columns:

列:

btdrelid - Object ID of the table (pg_class.oid)  
  
btdrelpages - number of pages currently in table data files  
  
btdexppages - number of pages expected according to current statistics  

例子:

In this example the tables shown all have calculated data size of 1 page and actual data file size 1 page. No bloat is detected.

gpadmin=# select * from gp_toolkit.gp_bloat_expected_pages limit 5;  
 btdrelid | btdrelpages | btdexppages   
----------+-------------+-------------  
    10789 |           1 |           1  
    10794 |           1 |           1  
    10799 |           1 |           1  
     5004 |           1 |           1  
     7175 |           1 |           1  
(5 rows)  

4、GP的系统表也可能产生垃圾,例如频繁的使用临时表(临时表是会话级别的,所以每次使用都要创建。会在pg_class, pg_attribute等系统表产生写入和删除的动作。产生系统表垃圾)。

PostgreSQL

1、首先要更新表的统计信息,因为接下来的两个视图是从统计信息来计算膨胀率的。

如果配置了autovacuum,PostgreSQL会自动生成统计信息,不需要人为干预。

2、查看膨胀的表、索引

《PostgreSQL 如何精确计算表膨胀(fsm,数据块layout讲解) - PostgreSQL table exactly bloat monitor use freespace map data》

《PostgreSQL 垃圾回收原理以及如何预防膨胀 - How to prevent object bloat in PostgreSQL》

连接到对应的数据库查询。

SELECT  
  current_database() AS db, schemaname, tablename, reltuples::bigint AS tups, relpages::bigint AS pages, otta,  
  ROUND(CASE WHEN otta=0 OR sml.relpages=0 OR sml.relpages=otta THEN 0.0 ELSE sml.relpages/otta::numeric END,1) AS tbloat,  
  CASE WHEN relpages < otta THEN 0 ELSE relpages::bigint - otta END AS wastedpages,  
  CASE WHEN relpages < otta THEN 0 ELSE bs*(sml.relpages-otta)::bigint END AS wastedbytes,  
  CASE WHEN relpages < otta THEN $$0 bytes$$::text ELSE (bs*(relpages-otta))::bigint || $$ bytes$$ END AS wastedsize,  
  iname, ituples::bigint AS itups, ipages::bigint AS ipages, iotta,  
  ROUND(CASE WHEN iotta=0 OR ipages=0 OR ipages=iotta THEN 0.0 ELSE ipages/iotta::numeric END,1) AS ibloat,  
  CASE WHEN ipages < iotta THEN 0 ELSE ipages::bigint - iotta END AS wastedipages,  
  CASE WHEN ipages < iotta THEN 0 ELSE bs*(ipages-iotta) END AS wastedibytes,  
  CASE WHEN ipages < iotta THEN $$0 bytes$$ ELSE (bs*(ipages-iotta))::bigint || $$ bytes$$ END AS wastedisize,  
  CASE WHEN relpages < otta THEN  
    CASE WHEN ipages < iotta THEN 0 ELSE bs*(ipages-iotta::bigint) END  
    ELSE CASE WHEN ipages < iotta THEN bs*(relpages-otta::bigint)  
      ELSE bs*(relpages-otta::bigint + ipages-iotta::bigint) END  
  END AS totalwastedbytes  
FROM (  
  SELECT  
    nn.nspname AS schemaname,  
    cc.relname AS tablename,  
    COALESCE(cc.reltuples,0) AS reltuples,  
    COALESCE(cc.relpages,0) AS relpages,  
    COALESCE(bs,0) AS bs,  
    COALESCE(CEIL((cc.reltuples*((datahdr+ma-  
      (CASE WHEN datahdr%ma=0 THEN ma ELSE datahdr%ma END))+nullhdr2+4))/(bs-20::float)),0) AS otta,  
    COALESCE(c2.relname,$$?$$) AS iname, COALESCE(c2.reltuples,0) AS ituples, COALESCE(c2.relpages,0) AS ipages,  
    COALESCE(CEIL((c2.reltuples*(datahdr-12))/(bs-20::float)),0) AS iotta -- very rough approximation, assumes all cols  
  FROM  
     pg_class cc  
  JOIN pg_namespace nn ON cc.relnamespace = nn.oid AND nn.nspname <> $$information_schema$$  
  LEFT JOIN  
  (  
    SELECT  
      ma,bs,foo.nspname,foo.relname,  
      (datawidth+(hdr+ma-(case when hdr%ma=0 THEN ma ELSE hdr%ma END)))::numeric AS datahdr,  
      (maxfracsum*(nullhdr+ma-(case when nullhdr%ma=0 THEN ma ELSE nullhdr%ma END))) AS nullhdr2  
    FROM (  
      SELECT  
        ns.nspname, tbl.relname, hdr, ma, bs,  
        SUM((1-coalesce(null_frac,0))*coalesce(avg_width, 2048)) AS datawidth,  
        MAX(coalesce(null_frac,0)) AS maxfracsum,  
        hdr+(  
          SELECT 1+count(*)/8  
          FROM pg_stats s2  
          WHERE null_frac<>0 AND s2.schemaname = ns.nspname AND s2.tablename = tbl.relname  
        ) AS nullhdr  
      FROM pg_attribute att   
      JOIN pg_class tbl ON att.attrelid = tbl.oid  
      JOIN pg_namespace ns ON ns.oid = tbl.relnamespace   
      LEFT JOIN pg_stats s ON s.schemaname=ns.nspname  
      AND s.tablename = tbl.relname  
      AND s.inherited=false  
      AND s.attname=att.attname,  
      (  
        SELECT  
          (SELECT current_setting($$block_size$$)::numeric) AS bs,  
            CASE WHEN SUBSTRING(SPLIT_PART(v, $$ $$, 2) FROM $$#"[0-9]+.[0-9]+#"%$$ for $$#$$)  
              IN ($$8.0$$,$$8.1$$,$$8.2$$) THEN 27 ELSE 23 END AS hdr,  
          CASE WHEN v ~ $$mingw32$$ OR v ~ $$64-bit$$ THEN 8 ELSE 4 END AS ma  
        FROM (SELECT version() AS v) AS foo  
      ) AS constants  
      WHERE att.attnum > 0 AND tbl.relkind=$$r$$  
      GROUP BY 1,2,3,4,5  
    ) AS foo  
  ) AS rs  
  ON cc.relname = rs.relname AND nn.nspname = rs.nspname  
  LEFT JOIN pg_index i ON indrelid = cc.oid  
  LEFT JOIN pg_class c2 ON c2.oid = i.indexrelid  
) AS sml order by wastedbytes desc limit 5  
select datname from pg_database where datname not in ($$template0$$, $$template1$$)'`  
do  
psql -d $db --pset=pager=off -q -x -c 'SELECT  
  current_database() AS db, schemaname, tablename, reltuples::bigint AS tups, relpages::bigint AS pages, otta,  
  ROUND(CASE WHEN otta=0 OR sml.relpages=0 OR sml.relpages=otta THEN 0.0 ELSE sml.relpages/otta::numeric END,1) AS tbloat,  
  CASE WHEN relpages < otta THEN 0 ELSE relpages::bigint - otta END AS wastedpages,  
  CASE WHEN relpages < otta THEN 0 ELSE bs*(sml.relpages-otta)::bigint END AS wastedbytes,  
  CASE WHEN relpages < otta THEN $$0 bytes$$::text ELSE (bs*(relpages-otta))::bigint || $$ bytes$$ END AS wastedsize,  
  iname, ituples::bigint AS itups, ipages::bigint AS ipages, iotta,  
  ROUND(CASE WHEN iotta=0 OR ipages=0 OR ipages=iotta THEN 0.0 ELSE ipages/iotta::numeric END,1) AS ibloat,  
  CASE WHEN ipages < iotta THEN 0 ELSE ipages::bigint - iotta END AS wastedipages,  
  CASE WHEN ipages < iotta THEN 0 ELSE bs*(ipages-iotta) END AS wastedibytes,  
  CASE WHEN ipages < iotta THEN $$0 bytes$$ ELSE (bs*(ipages-iotta))::bigint || $$ bytes$$ END AS wastedisize,  
  CASE WHEN relpages < otta THEN  
    CASE WHEN ipages < iotta THEN 0 ELSE bs*(ipages-iotta::bigint) END  
    ELSE CASE WHEN ipages < iotta THEN bs*(relpages-otta::bigint)  
      ELSE bs*(relpages-otta::bigint + ipages-iotta::bigint) END  
  END AS totalwastedbytes  
FROM (  
  SELECT  
    nn.nspname AS schemaname,  
    cc.relname AS tablename,  
    COALESCE(cc.reltuples,0) AS reltuples,  
    COALESCE(cc.relpages,0) AS relpages,  
    COALESCE(bs,0) AS bs,  
    COALESCE(CEIL((cc.reltuples*((datahdr+ma-  
      (CASE WHEN datahdr%ma=0 THEN ma ELSE datahdr%ma END))+nullhdr2+4))/(bs-20::float)),0) AS otta,  
    COALESCE(c2.relname,$$?$$) AS iname, COALESCE(c2.reltuples,0) AS ituples, COALESCE(c2.relpages,0) AS ipages,  
    COALESCE(CEIL((c2.reltuples*(datahdr-12))/(bs-20::float)),0) AS iotta -- very rough approximation, assumes all cols  
  FROM  
     pg_class cc  
  JOIN pg_namespace nn ON cc.relnamespace = nn.oid AND nn.nspname <> $$information_schema$$  
  LEFT JOIN  
  (  
    SELECT  
      ma,bs,foo.nspname,foo.relname,  
      (datawidth+(hdr+ma-(case when hdr%ma=0 THEN ma ELSE hdr%ma END)))::numeric AS datahdr,  
      (maxfracsum*(nullhdr+ma-(case when nullhdr%ma=0 THEN ma ELSE nullhdr%ma END))) AS nullhdr2  
    FROM (  
      SELECT  
        ns.nspname, tbl.relname, hdr, ma, bs,  
        SUM((1-coalesce(null_frac,0))*coalesce(avg_width, 2048)) AS datawidth,  
        MAX(coalesce(null_frac,0)) AS maxfracsum,  
        hdr+(  
          SELECT 1+count(*)/8  
          FROM pg_stats s2  
          WHERE null_frac<>0 AND s2.schemaname = ns.nspname AND s2.tablename = tbl.relname  
        ) AS nullhdr  
      FROM pg_attribute att   
      JOIN pg_class tbl ON att.attrelid = tbl.oid  
      JOIN pg_namespace ns ON ns.oid = tbl.relnamespace   
      LEFT JOIN pg_stats s ON s.schemaname=ns.nspname  
      AND s.tablename = tbl.relname  
      AND s.inherited=false  
      AND s.attname=att.attname,  
      (  
        SELECT  
          (SELECT current_setting($$block_size$$)::numeric) AS bs,  
            CASE WHEN SUBSTRING(SPLIT_PART(v, $$ $$, 2) FROM $$#"[0-9]+.[0-9]+#"%$$ for $$#$$)  
              IN ($$8.0$$,$$8.1$$,$$8.2$$) THEN 27 ELSE 23 END AS hdr,  
          CASE WHEN v ~ $$mingw32$$ OR v ~ $$64-bit$$ THEN 8 ELSE 4 END AS ma  
        FROM (SELECT version() AS v) AS foo  
      ) AS constants  
      WHERE att.attnum > 0 AND tbl.relkind=$$r$$  
      GROUP BY 1,2,3,4,5  
    ) AS foo  
  ) AS rs  
  ON cc.relname = rs.relname AND nn.nspname = rs.nspname  
  LEFT JOIN pg_index i ON indrelid = cc.oid  
  LEFT JOIN pg_class c2 ON c2.oid = i.indexrelid  
) AS sml order by wastedibytes desc limit 5  
根据浪费的字节数, 设置合适的autovacuum_vacuum_scale_factor, 大表如果频繁的有更新或删除和插入操作, 建议设置较小的autovacuum_vacuum_scale_factor来降低浪费空间.   
  
同时还需要打开autovacuum, 根据服务器的内存大小, CPU核数, 设置足够大的autovacuum_work_mem 或 autovacuum_max_workers 或 maintenance_work_mem, 以及足够小的 autovacuum_naptime .   
  
同时还需要分析是否对大数据库使用了逻辑备份pg_dump, 系统中是否经常有长SQL, 长事务. 这些都有可能导致膨胀.   
  
使用pg_reorg或者vacuum full可以回收膨胀的空间.   
  
参考: http://blog.163.com/digoal@126/blog/static/1638770402015329115636287/   
  
otta评估出的表实际需要页数, iotta评估出的索引实际需要页数;   
  
bs数据库的块大小;   
  
tbloat表膨胀倍数, ibloat索引膨胀倍数, wastedpages表浪费了多少个数据块, wastedipages索引浪费了多少个数据块;   
  
wastedbytes表浪费了多少字节, wastedibytes索引浪费了多少字节;   

如何回收垃圾

Greenplum

1、vacuum full

注意,vacuum full不能回收索引的膨胀空间。vacuum full 加载的锁与DDL锁类似,是排它锁。建议在没有业务的时候执行,不要堵塞业务。

使用vacuum full回收垃圾的建议操作流程:

1 记录下表的索引定义  
  
2 删除索引  
  
3 vacuum full 表  
  
4 并行重建索引  

例子

postgres=# create table bloat_test(id int , info text);  
NOTICE:  Table doesn't have 'DISTRIBUTED BY' clause -- Using column named 'id' as the Greenplum Database data distribution key for this table.  
HINT:  The 'DISTRIBUTED BY' clause determines the distribution of data. Make sure column(s) chosen are the optimal data distribution key to minimize skew.  
CREATE TABLE  
  
postgres=# insert into bloat_test select generate_series(1,100000000), 'test';  
INSERT 0 100000000  
  
postgres=# create index idx_bloat_test on bloat_test(id);  
CREATE INDEX  
  
postgres=# update bloat_test set info='new';  
UPDATE 100000000  
  
postgres=# select * from gp_toolkit.gp_bloat_expected_pages where btdrelid='bloat_test'::Regclass;  
 btdrelid | btdrelpages | btdexppages   
----------+-------------+-------------  
   629640 |      244453 |      102753  
(1 row)  
  
postgres=# select pg_size_pretty(pg_relation_size('bloat_test'));  
 pg_size_pretty   
----------------  
 7639 MB  
(1 row)  
  
postgres=# select pg_size_pretty(pg_relation_size('idx_bloat_test'));  
 pg_size_pretty   
----------------  
 6380 MB  
(1 row)  

回收垃圾的错误做法

postgres=# vacuum full bloat_test ;  
VACUUM  
postgres=# select pg_size_pretty(pg_relation_size('bloat_test'));  
 pg_size_pretty   
----------------  
 3526 MB  
(1 row)  
  
索引没有被回收:  
postgres=# select pg_size_pretty(pg_relation_size('idx_bloat_test'));  
 pg_size_pretty   
----------------  
 6380 MB  
(1 row)  

回收垃圾的正确做法

postgres=# drop index idx_bloat_test ;  
DROP INDEX  
postgres=# vacuum full bloat_test ;  
VACUUM  
postgres=# create index idx_bloat_test on bloat_test(id);  
CREATE INDEX  
  
postgres=# select pg_size_pretty(pg_relation_size('bloat_test'));  
 pg_size_pretty   
----------------  
 3526 MB  
(1 row)  
  
postgres=# select pg_size_pretty(pg_relation_size('idx_bloat_test'));  
 pg_size_pretty   
----------------  
 2174 MB  
(1 row)  

2、alter table set distribute

alter table  set with (reorganize=true) distributed randomly;  
  
或  
  
alter table  set with (reorganize=true) distributed by (,....)  

set distribute可以回收索引的膨胀空间。set distribute 加载的锁与DDL锁类似,是排它锁。建议在没有业务的时候执行,不要堵塞业务。

同时set distribute只要分布条件不变,就是在节点内完成的,不会涉及数据的重分布。

建议的操作流程:

1 记录下表的分布列  
  
2 执行set distribute (REORGANIZE=true)  
  
如果是随机分布,则设置为随机分布  

例子

postgres=# update bloat_test set info='test';  
UPDATE 100000000  
  
postgres=# select pg_size_pretty(pg_relation_size('bloat_test'));  
 pg_size_pretty   
----------------  
 7727 MB  
(1 row)  
  
postgres=# select pg_size_pretty(pg_relation_size('idx_bloat_test'));  
 pg_size_pretty   
----------------  
 4411 MB  
(1 row)  
  
根据当前的分布规则,重分布:  
  
表和索引的垃圾都回收了。  
  
postgres=# alter table bloat_test set with (reorganize=true) distributed by (id);  
ALTER TABLE  
postgres=# select pg_size_pretty(pg_relation_size('bloat_test'));  
 pg_size_pretty   
----------------  
 4201 MB  
(1 row)  
  
postgres=# select pg_size_pretty(pg_relation_size('idx_bloat_test'));  
 pg_size_pretty   
----------------  
 2130 MB  
(1 row)  

PostgreSQL

PostgreSQL 通常用在OLTP系统中,业务对数据库的可用性比OLAP系统要高很多,所以长时间持有排它锁的VACUUM FULL要少用。

通常PostgreSQL的autovacuum参数开启后,不会导致大量的膨胀,除非有长事务、或者人为的设定(例如防止备库QUERY与VACUUM冲突的设定)妨碍了垃圾回收。这些都有解决方法,如下:

《为什么啤酒和纸尿裤最搭 - 用HybridDB/PostgreSQL查询商品营销最佳组合》

《PostgreSQL snapshot too old补丁, 防止数据库膨胀》

《PostgreSQL 9.6 快照过旧 - 源码浅析》

PostgreSQL的垃圾回收方法举例:

1、首推reorg的方法,这种方法是新建一个对象,增量同步到新的对象,最后将新对象的DATAFILE和老对象(膨胀对象)的DATAFILE进行交换。

仅仅是交换文件时,需要一个排它锁,非常短暂。

参考

《PostgreSQL 收缩膨胀表或索引 - pg_squeeze or pg_repack》

2、如果你没有按照pg_squeeze或pg_repack插件,那么在遇到膨胀后,可以通过vacuum full来回收,PostgreSQL 9.0以后,VACUUM FULL会回收索引的垃圾,比GP更高级一点。

建议的操作

set lock_timeout='2s';  
vacuum full tablename;  

注意事项

1、在执行vacuum full或alter table回收垃圾时,务必注意这个是排它锁,请在维护窗口执行,或者至少应该加一个锁超时的设定在开始搞。

2、PG通常不会产生膨胀,除非配置或使用不规范。见文中详解。

3、PG的垃圾回收,建议使用reorg的方式,尽量避免使用vacuum full。

4、GP评估垃圾时,如果你发现没有垃圾,别高兴太早,有可能是统计信息没有收集。所以保持有节奏的analyze是好的习惯。

另外可以参考一下这个ISSUE,不需要依赖ANALYZE,通过采样的方法评估垃圾比例。

https://github.com/greenplum-db/gpdb/issues/706

参考文档

1、alter table 语法

https://gpdb.docs.pivotal.io/4370/ref_guide/sql_commands/ALTER_TABLE.html

2、性能诊断

https://gpdb.docs.pivotal.io/4330/admin_guide/perf_issues.html

3、日常维护

https://gpdb.docs.pivotal.io/4330/admin_guide/managing/maintain.html

4、表膨胀

https://discuss.pivotal.io/hc/en-us/articles/202873573-FAQ-Bloat-in-HEAP-tables

5、消除表膨胀的方法

https://discuss.pivotal.io/hc/en-us/articles/206578327-What-are-the-different-option-to-remove-bloat-from-a-table-

6、如何通过重分布消除表膨胀

https://discuss.pivotal.io/hc/en-us/articles/203248413-Tip-Removing-Fragmentaion-aka-bloat-on-a-relation-using-Redistribute-

你可能感兴趣的:(如何检测、清理Greenplum垃圾 - 阿里云HybridDB for PG最佳实践)