- 车辆检测与识别:车辆分类_(9).车辆分类模型的评估与优化
zhubeibei168
机器人(二)分类数据挖掘人工智能计算机视觉机器学习视频监控
车辆分类模型的评估与优化在车辆检测与识别领域,车辆分类模型的评估与优化是确保模型性能和可靠性的关键步骤。本节将详细介绍如何评估车辆分类模型的性能,并提供一些优化技术,以提高模型的准确性和效率。模型评估指标1.准确率(Accuracy)准确率是最直观的评估指标,表示分类器正确分类的样本占总样本的比例。然而,在不平衡数据集上,准确率可能具有误导性。fromsklearn.metricsimportac
- win7下python3.6通过pip安装scipy报错的解决办法
青松一夏
python
一、问题描述通过pip方式安装了numpy和sklearn,但是sklearn需要依赖于scipy,但当通过pip方式安装scipy时,报错:numpy.distutils.system_info.NotFoundError:nolapack/blasresourcesfound按照网上的教程,并没有找到真正的解决办法,后来我是通过如下方式解决的。二、我的解决方案(1)首先卸载numpypipun
- 【python 机器学习】sklearn数据集的使用
人才程序员
python机器学习sklearn人工智能深度学习神经网络目标检测
文章目录sklearn数据集的使用1.`sklearn`内置数据集2.导入`sklearn`数据集3.加载和使用Iris数据集3.1加载数据3.2查看数据3.3使用数据集进行分类任务4.加载和使用Digits数据集4.1加载数据4.2查看数据4.3使用数据集进行分类任务5.加载和使用BreastCancer数据集5.1加载数据5.2查看数据5.3使用数据集进行分类任务6.总结sklearn数据集的
- 【sklearn 01】人工智能概述
@金色海岸
人工智能sklearnpython
一、人工智能,机器学习,深度学习人工智能指由人类制造出的具有智能的机器。这是一个非常大的范围,长远目标是让机器实现人工智能,但目前我们仍处在非常初始的阶段,甚至不能称为智能机器学习是指通过数据训练出能完成一定功能的模型,是实现人工智能的手段之一,也是目前最主流的人工智能实现方法深度学习则是机器学习的分支,超过8层的神经网络模型就叫深度学习,深度即层数。深度学习目前在语音、图像等领域取得很好的效果
- 【sklearn 05】sklearn功能模块
@金色海岸
sklearn人工智能python
sklearn功能模块分类:识别某个对象属于那个类别回归:预测与对象相关联的连续值属性聚类:将相似对象自动分组降维:减少要考虑的随机变量的数量模型选择:比较、验证、选择参数和模型预处理:特征提取和归一化
- 【sklearn 07】sklearn工艺流程
@金色海岸
人工智能sklearnpython机器学习
01数据的获取02数据预处理03特征的提取04特征的选择05模型的训练06模型的评估07模型的优化
- 【人工智能】【Python】在Scikit-Learn中使用决策树算法(ID3和CART)
SmallBambooCode
机器学习人工智能python算法scikit-learn决策树机器学习ai
importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.datasetsimportload_irisfromsklearn.model_selectionimporttrain_test_splitfromsklearn.treeimportDecisionTreeClassifier,plot_tree#加载数据集iris=load_iri
- 【sklearn 03】逻辑回归、决策树、支持向量机
@金色海岸
sklearn逻辑回归决策树
逻辑回归、决策树、支持向量机-逻辑回归logisticsregression(逻辑回归)算法是经典的分类算法,基本思想是构造一个概率的拟合函数。决策树决策树的基本思想是根据样例去推断其背后的树形知识表征支持向量机支持向量机SVM(supportvectormachine)的基本思想是寻找最大的间隔的分割超平面。离分割超平面最近的这些样本点称为支持向量机
- 训练数据重复采样,让正负样本比例1:1
kimi-222
机器学习人工智能深度学习
详细解释resample函数:resample函数来自sklearn.utils,用于从数据集中重新抽样。replace=True表示允许重复抽样,即同一个样本可以被多次选中。n_samples指定抽样的数量。确保训练集数量相同:通过resample函数,你可以确保正训练集和负训练集的数量相同,即使其中一个集的数量小于另一个集的数量。如果n_train_num小于max_train_num,res
- 【sklearn 04】DNN、CNN、RNN
@金色海岸
sklearndnncnn
DNNDNN(DeepNeuralNetworks,深度神经网络)是一种相对浅层机器学习模型具有更多参数,需要更多数据进行训练的机器学习算法CNNCNN(convolutionalNeuralNetworks,卷积神经网络)是一种从局部特征开始学习并逐渐整合的神经网络。卷积神经网络通过卷积层来进行特征提取,通过池化层进行降维,相比较全连接的神经网络,卷积神经网络降低了模型复杂度,减少了模型的参数,
- 【sklearn 02】监督学习、非监督下学习、强化学习
@金色海岸
sklearn学习人工智能
监督学习、非监督学习、强化学习**机器学习通常分为无监督学习、监督学习和强化学习三类。-第一类:无监督学习(unsupervisedlearning),指的是从信息出发自动寻找规律,分析数据的结构,常见的无监督学习任务有聚类、降维、密度估计、关联分析等。-第二类:监督学习(supervisedlearning),监督学习指的是使用带标签的数据去训练模型,并预测未知数据的标签。监督学习有两种,当预测
- 【机器学习】skit-learn中LSI模型的实现
一穷二白到年薪百万
机器学习pythonsklearn
参考文献[1]sklearn_api.lsimodel–ScikitlearnwrapperforLatentSemanticIndexing[2]Pythonmodels.LsiModel方法代码示例
- python手写kmeans算法
菜鸟懿
机器学习聚类算法python
kmean聚类是最基础和常见的算法,工程上使用比较常见,spark,sklearn都有实现,本文手写实现kmeans#!/usr/bin/pythonimportsysimportrandomimportmathdefcreate_rand_points(max_x,max_y,count):"""Createcountpoints(0-x),(0-y)."""points=[]foriinran
- 无网络entos7报错ImportError: /lib64/libm.so.6: version `GLIBC_2.27‘ not found更新glibc
夏离
网络
最近在尝试使用sklearn的升级版cuml,因为是一台没有连接互联网的gpu机器,所以构建cuml环境过程很坎坷,需要各种将各种whl包在线下载后上传到服务器中。当我终于解决完包的互相依赖问题后,在importcuml时候遇到一个错误:ImportError:/lib64/libm.so.6:version`GLIBC_2.27’notfound(requiredby/anaconda3/env
- 基于python的手写数字识别knn_用sklearn中的KNN实现Kaggle手写数字识别
普和司
importcsvfromsklearnimportneighbors#导入训练数据和测试数据defloadData(filename1,filename2,trainDataSet,trainTargetSet,testDataSet):withopen(filename1,'r')ascsvfile1:lines1=csv.reader(csvfile1)dataSet=list(lines1
- 基于线性回归和多项式回归的完整代码
yzx991013
回归线性回归算法
1.导入必要库importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.linear_modelimportLinearRegressionfromsklearn.preprocessingimportPolynomialFeaturesfromsklearn.pipelineimportPipelinefromsklearn.metricsi
- Bert的使用
巨鹿..
深度学习记录bert人工智能深度学习
一、Data.py#data负责产生两个dataloaderfromtorch.utils.dataimportDataLoader,Datasetfromsklearn.model_selectionimporttrain_test_split#给X,Y和分割比例,分割出来一个训练集和验证机的X,Yimporttorchdefread_file(path):data=[]label=[]with
- sklearn 支持向量机实践总结
可爱的红薯
pythonsklearn支持向量机pythonsklearn支持向量机
转自http://www.cnblogs.com/pinard/p/6117515.html之前通过一个系列对支持向量机(以下简称SVM)算法的原理做了一个总结,本文从实践的角度对scikit-learnSVM算法库的使用做一个小结。scikit-learnSVM算法库封装了libsvm和liblinear的实现,仅仅重写了算法了接口部分。1.scikit-learnSVM算法库使用概述sciki
- 加州房价数据集加载出错:无法获取数据,HTTP Error : Forbidden
code_welike
http网络协议网络python
加州房价数据集加载出错:无法获取数据,HTTPError:Forbidden在使用Python的sklearn库中,我们可以很方便地获取一些常用的数据集。在加载加州房价数据集时,有时会遇到“HTTPError:Forbidden”的错误提示,导致无法获取数据。这个问题的出现可能是因为我们的IP被限制了。那么该如何解决这个问题呢?解决方案:1.更换IP地址:首先,我们应该排除IP被限制的可能性。可以
- 解决Python中加载sklearn加州房价数据集出错的问题
冰雪之境
pythonsklearn开发语言Python
解决Python中加载sklearn加州房价数据集出错的问题在使用Python的scikit-learn库进行机器学习任务时,我们经常需要加载各种数据集。其中,加州房价数据集是一个常用的示例数据集之一,用于回归问题的训练和测试。然而,有时在加载加州房价数据集时可能会遇到HTTP错误的问题,具体表现为"HTTPError:HTTPError:Forbidden"。本文将介绍如何解决这个问题,并提供相
- 【完整版解决方案】sklearn加州房价数据集出错 housing = fetch_california_housing() HTTPError: HTTP Error 403: Forbidden
getalong
sklearn人工智能数据仓库python
完整解决方案(一键复制)代码替换housing=fetch_california_housing()翻了几条解决方案要么不全,要么收费,烦死个人下面给出完整解决方案!!!1、下载数据集原始数据集:cal_housing.tgz2、放置数据集查找本地位置,执行代码后进入目标文件夹。fromsklearnimportdatasetsdata_home=datasets.get_data_home()放
- sklearn库安装
吧啦吧啦吡叭卜
sklearn人工智能python
已经安装了numpy、matplotlib、scipy这些库一直报错×pythonsetup.pyegg_infodidnotrunsuccessfully.│exitcode:1╰─>[15linesofoutput]The'sklearn'PyPIpackageisdeprecated,use'scikit-learn'ratherthan'sklearn'forpipcommands.Her
- 深度学习分类回归(衣帽数据集)
何仙鸟
深度学习分类回归
一、步骤1加载数据集fashion_minst2搭建classNeuralNetwork模型3设置损失函数,优化器4编写评估函数5编写训练函数6开始训练7绘制损失,准确率曲线二、代码导包,打印版本号:importmatplotlibasmplimportmatplotlib.pyplotasplt%matplotlibinlineimportnumpyasnpimportsklearnimport
- [Machine Learning] K-means算法
进阶的小蜉蝣
machinelearning算法kmeans机器学习
HuBERT预训练过程中会用到K-means算法,本文简单介绍一下K-means算法的基本流程。简单地讲,K-means就是给特征向量集进行聚类。给定一个特征向量集{X}和目标聚类数N,K-means会不断迭代,直到X被分成N类,且每一类的中心点不再明显变化。先看一个简单例子:fromsklearn.clusterimportKMeansimportnumpyasnpimportmatplotli
- 机器学习之学习笔记
孤城laugh
机器学习学习笔记人工智能python
机器学习-学习笔记1.简介2.算法3.特征工程3.1数据集3.2特征提取3.3特征预处理3.4特征降维4.分类算法4.1`sklearn`转换器和估计器4.2K-近邻算法(KNN)4.3模型选择与调优4.4朴素贝叶斯算法4.5决策树4.6集成学习方法之随机森林5.回归算法5.1线性回归5.2过拟合与欠拟合5.3岭回归5.4逻辑回归(实际上是分类算法,用于解决二分类问题)6.聚类算法1.无监督学习2
- kNN算法:对红酒数据进行分类
阿拉保
算法分类数据挖掘
第2关使用sklearn中的kNN算法进行分类fromsklearn.neighborsimportKNeighborsClassifierdefclassification(train_feature,train_label,test_feature):'''使用KNeighborsClassifier对test_feature进行分类:paramtrain_feature:训练集数据:para
- MATLAB基础应用精讲-【数模应用】主成分(pca)分析(附python代码实现)
林聪木
matlab人工智能大数据
目录前言知识储备降维概述算法原理什么是PCAPCA降维过程PCA算法数学步骤选择主成分个数(即k的值)sklearn中参数的解释数学模型协方差协方差矩阵编辑编辑原理推导编辑编辑编辑编辑实际操作主成分分析的计算方法方法1.协方差+特征值分解方法2:奇异值分解对比不同方法计算效率物理意义算法步骤SPSSAU主成分(pca)分析说明1、信息浓缩2、权重计算3、综合得分【综合竞争力】疑难解惑成分得分后用于
- python代码实现支持神经网络对鸢尾花分类
邀_灼灼其华
机器学习及概率统计python神经网络分类sklearn
1、导入支持向量机模型,划分数据集fromsklearnimportdatasetsfromsklearnimportsvmiris=datasets.load_iris()iris_x=iris.datairis_y=iris.targetindices=np.random.permutation(len(iris_x))iris_x_train=iris_x[indices[:-10]]iri
- 构建神经网络之sklearn(完善)
邪恶的贝利亚
神经网络sklearn机器学习
1.数据预处理1.缺失值importpandasaspd#假设我们有一个DataFramedfprint(df.isnull().sum())#查看每一列缺失值的数量数值型数据:fromsklearn.imputeimportSimpleImputer#对于数值型数据,使用均值填充imputer=SimpleImputer(strategy='mean')#可选:'mean','median','
- 【Python-ML】SKlearn库性能指标ROC-AUC
fjssharpsword
Bigdatapython专栏
#-*-coding:utf-8-*-'''Createdon2018年1月19日@author:Jason.F@summary:ROC(receiveroperatorcharacteristic,基于模型真正率和假正率等性能指标评估分类模型'''importpandasaspdfromsklearn.preprocessingimportLabelEncoderfromsklearn.cros
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。