ucore操作系统lab8——实验报告

一、练习一: 完成读文件操作的实现

首先了解打开文件的处理流程,然后参考本实验后续的文件读写操作的过程分析,编写在sfs_inode.c中sfs_io_nolock读文件中数据的实现代码。


1、打开文件原理:

首先假定用户进程需要打开的文件已经存在在硬盘上。以user/sfs_filetest1.c为例,首先用户进程会调用在main函数中的如下语句:
int fd1 = safe_open("/test/testfile", O_RDWR | O_TRUNC);
从字面上可以看出,如果ucore能够正常查找到这个文件,就会返回一个代表文件的文件描述符fd1,这样在接下来的读写文件过程中,就直接用这样fd1来代表就可以了。那这个打开文件的过程是如何一步一步实现的呢?

①通用文件访问接口层的处理流程

首先进入通用文件访问接口层的处理流程,即进一步调用如下用户态函数: open->sys_open->syscall,从而引起系统调用进入到内核态。到了内核态后,通过中断处理例程,会调用到sys_open内核函数,并进一步调用sysfile_open内核函数。到了这里,需要把位于用户空间的字符串"/test/testfile"拷贝到内核空间中的字符串path中,并进入到文件系统抽象层的处理流程完成进一步的打开文件操作中。

②文件系统抽象层的处理流程

Ⅰ、分配一个空闲的file数据结构变量file在文件系统抽象层的处理中,首先调用的是file_open函数,它要给这个即将打开的文件分配一个file数据结构的变量,这个变量其实是当前进程的打开文件数组current->fs_struct->filemap[]中的一个空闲元素(即还没用于一个打开的文件),而这个元素的索引值就是最终要返回到用户进程并赋值给变量fd1。到了这一步还仅仅是给当前用户进程分配了一个file数据结构的变量,还没有找到对应的文件索引节点。

为此需要进一步调用vfs_open函数来找到path指出的文件所对应的基于inode数据结构的VFS索引节点node。vfs_open函数需要完成两件事情:通过vfs_lookup找到path对应文件的inode;调用vop_open函数打开文件。

Ⅱ、找到文件设备的根目录“/”的索引节点需要注意,这里的vfs_lookup函数是一个针对目录的操作函数,它会调用vop_lookup函数来找到SFS文件系统中的“/test”目录下的“testfile”文件。为此,vfs_lookup函数首先调用get_device函数,并进一步调用vfs_get_bootfs函数(其实调用了)来找到根目录“/”对应的inode。这个inode就是位于vfs.c中的inode变量bootfs_node。这个变量在init_main函数(位于kern/process/proc.c)执行时获得了赋值。

Ⅲ、找到根目录“/”下的“test”子目录对应的索引节点,在找到根目录对应的inode后,通过调用vop_lookup函数来查找“/”和“test”这两层目录下的文件“testfile”所对应的索引节点,如果找到就返回此索引节点。

Ⅳ、把file和node建立联系。完成第3步后,将返回到file_open函数中,通过执行语句“file->node=node;”,就把当前进程的current->fs_struct->filemap[fd](即file所指变量)的成员变量node指针指向了代表“/test/testfile”文件的索引节点node。这时返回fd。经过重重回退,通过系统调用返回,用户态的syscall->sys_open->open->safe_open等用户函数的层层函数返回,最终把把fd赋值给fd1。自此完成了打开文件操作。但这里我们还没有分析第2和第3步是如何进一步调用SFS文件系统提供的函数找位于SFS文件系统上的“/test/testfile”所对应的sfs磁盘inode的过程。下面需要进一步对此进行分析。

③SFS文件系统层的处理流程

这里需要分析文件系统抽象层中没有彻底分析的vop_lookup函数到底做了啥。下面我们来看看。在sfs_inode.c中的sfs_node_dirops变量定义了“.vop_lookup = sfs_lookup”,所以我们重点分析sfs_lookup的实现。

sfs_lookup有三个参数:node,path,node_store。其中node是根目录“/”所对应的inode节点;path是文件“testfile”的绝对路径“/test/testfile”,而node_store是经过查找获得的“testfile”所对应的inode节点。

Sfs_lookup函数以“/”为分割符,从左至右逐一分解path获得各个子目录和最终文件对应的inode节点。在本例中是分解出“test”子目录,并调用sfs_lookup_once函数获得“test”子目录对应的inode节点subnode,然后循环进一步调用sfs_lookup_once查找以“test”子目录下的文件“testfile1”所对应的inode节点。当无法分解path后,就意味着找到了testfile1对应的inode节点,就可顺利返回了。

sfs_lookup_once将调用sfs_dirent_search_nolock函数来查找与路径名匹配的目录项,如果找到目录项,则根据目录项中记录的inode所处的数据块索引值找到路径名对应的SFS磁盘inode,并读入SFS磁盘inode对的内容,创建SFS内存inode。

2、读文件实现

//LAB8:EXERCISE1 YOUR CODE HINT: call sfs_bmap_load_nolock, sfs_rbuf, sfs_rblock,etc. read different kind of blocks in file
	/*
	 * (1) If offset isn't aligned with the first block, Rd/Wr some content from offset to the end of the first block
	 *       NOTICE: useful function: sfs_bmap_load_nolock, sfs_buf_op
	 *               Rd/Wr size = (nblks != 0) ? (SFS_BLKSIZE - blkoff) : (endpos - offset)
	 * (2) Rd/Wr aligned blocks 
	 *       NOTICE: useful function: sfs_bmap_load_nolock, sfs_block_op
     * (3) If end position isn't aligned with the last block, Rd/Wr some content from begin to the (endpos % SFS_BLKSIZE) of the last block
	 *       NOTICE: useful function: sfs_bmap_load_nolock, sfs_buf_op	
	*/
//因为数据不一定与block对其,分成三段读取
	//读取头部的数据
    if ((blkoff = offset % SFS_BLKSIZE) != 0) {
        size = (nblks != 0) ? (SFS_BLKSIZE - blkoff) : (endpos - offset);//找到第一个数据块的大小
        if ((ret = sfs_bmap_load_nolock(sfs, sin, blkno, &ino)) != 0) {//先找到内存文件索引对应的block的编号ino
            goto out;
        }
        if ((ret = sfs_buf_op(sfs, buf, size, ino, blkoff)) != 0) {//完成实际的读写操作
            goto out;
        }
        alen += size;
        if (nblks == 0) {
            goto out;
        }
        buf += size, blkno ++, nblks --;
    }
	//读取中间部分的数据,一块一块地读
    size = SFS_BLKSIZE;
    while (nblks != 0) {
        if ((ret = sfs_bmap_load_nolock(sfs, sin, blkno, &ino)) != 0) {
            goto out;
        }
        if ((ret = sfs_block_op(sfs, buf, ino, 1)) != 0) {
            goto out;
        }
        alen += size, buf += size, blkno ++, nblks --;
    }
	//读取末尾的数据
    if ((size = endpos % SFS_BLKSIZE) != 0) {
        if ((ret = sfs_bmap_load_nolock(sfs, sin, blkno, &ino)) != 0) {
            goto out;
        }
        if ((ret = sfs_buf_op(sfs, buf, size, ino, 0)) != 0) {
            goto out;
        }
        alen += size;
    }
out:
    *alenp = alen;
    if (offset + alen > sin->din->size) {
        sin->din->size = offset + alen;
        sin->dirty = 1;
    }
    return ret;
}


二、练习二: 完成基于文件系统的执行程序机制的实现

改写proc.c中的load_icode函数和其他相关函数,实现基于文件系统的执行程序机制。执行:make qemu。如果能看看到sh用户程序的执行界面,则基本成功了。如果在sh用户界面上可以执行”ls”,”hello”等其他放置在sfs文件系统中的其他执行程序,则可以认为本实验基本成功。

1、实验流程:

①建立内存管理器 

②建立页目录表  

③从硬盘上读取程序内容到内存 

④建立相应的虚拟内存映射表

 ⑤设置好用户栈

 ⑥设置进程的中断帧

2、初始化fs中的进程控制结构

// alloc_proc - alloc a proc_struct and init all fields of proc_struct
static struct proc_struct *
alloc_proc(void) {
    struct proc_struct *proc = kmalloc(sizeof(struct proc_struct));
    if (proc != NULL) {
    //LAB4:EXERCISE1 YOUR CODE
    /*
     * below fields in proc_struct need to be initialized
     *       enum proc_state state;                      // Process state
     *       int pid;                                    // Process ID
     *       int runs;                                   // the running times of Proces
     *       uintptr_t kstack;                           // Process kernel stack
     *       volatile bool need_resched;                 // bool value: need to be rescheduled to release CPU?
     *       struct proc_struct *parent;                 // the parent process
     *       struct mm_struct *mm;                       // Process's memory management field
     *       struct context context;                     // Switch here to run process
     *       struct trapframe *tf;                       // Trap frame for current interrupt
     *       uintptr_t cr3;                              // CR3 register: the base addr of Page Directroy Table(PDT)
     *       uint32_t flags;                             // Process flag
     *       char name[PROC_NAME_LEN + 1];               // Process name
     */
     //LAB5 YOUR CODE : (update LAB4 steps)
    /*
     * below fields(add in LAB5) in proc_struct need to be initialized	
     *       uint32_t wait_state;                        // waiting state
     *       struct proc_struct *cptr, *yptr, *optr;     // relations between processes
	 */
    //LAB8:EXERCISE2 YOUR CODE HINT:need add some code to init fs in proc_struct, ...
        proc->state = PROC_UNINIT;
        proc->pid = -1;
        proc->runs = 0;
        proc->kstack = 0;
        proc->need_resched = 0;
        proc->parent = NULL;
        proc->mm = NULL;
        memset(&(proc->context), 0, sizeof(struct context));
        proc->tf = NULL;
        proc->cr3 = boot_cr3;
        proc->flags = 0;
        memset(proc->name, 0, PROC_NAME_LEN);
        proc->wait_state = 0;
        proc->cptr = proc->optr = proc->yptr = NULL;
        proc->rq = NULL;
        proc->run_link.prev = proc->run_link.next = NULL;
        proc->time_slice = 0;
        proc->lab6_run_pool.left = proc->lab6_run_pool.right = proc->lab6_run_pool.parent = NULL;
        proc->lab6_stride = 0;
        proc->lab6_priority = 0;
        proc->filesp = NULL;
    }
    return proc;
}

3、load_icode实现

static int
load_icode(int fd, int argc, char **kargv) {
    /* LAB8:EXERCISE2 YOUR CODE  HINT:how to load the file with handler fd  in to process's memory? how to setup argc/argv?
     * MACROs or Functions:
     *  mm_create        - create a mm
     *  setup_pgdir      - setup pgdir in mm
     *  load_icode_read  - read raw data content of program file
     *  mm_map           - build new vma
     *  pgdir_alloc_page - allocate new memory for  TEXT/DATA/BSS/stack parts
     *  lcr3             - update Page Directory Addr Register -- CR3
     */
	/* (1) create a new mm for current process
     * (2) create a new PDT, and mm->pgdir= kernel virtual addr of PDT
     * (3) copy TEXT/DATA/BSS parts in binary to memory space of process
     *    (3.1) read raw data content in file and resolve elfhdr
     *    (3.2) read raw data content in file and resolve proghdr based on info in elfhdr
     *    (3.3) call mm_map to build vma related to TEXT/DATA
     *    (3.4) callpgdir_alloc_page to allocate page for TEXT/DATA, read contents in file
     *          and copy them into the new allocated pages
     *    (3.5) callpgdir_alloc_page to allocate pages for BSS, memset zero in these pages
     * (4) call mm_map to setup user stack, and put parameters into user stack
     * (5) setup current process's mm, cr3, reset pgidr (using lcr3 MARCO)
     * (6) setup uargc and uargv in user stacks
     * (7) setup trapframe for user environment
     * (8) if up steps failed, you should cleanup the env.
     */
    assert(argc >= 0 && argc <= EXEC_MAX_ARG_NUM);
//(1)建立内存管理器 
    if (current->mm != NULL) {
        panic("load_icode: current->mm must be empty.\n");
    }

    int ret = -E_NO_MEM;
    struct mm_struct *mm;
    if ((mm = mm_create()) == NULL) {
        goto bad_mm;
    }
//(2)建立页目录表 
    if (setup_pgdir(mm) != 0) {
        goto bad_pgdir_cleanup_mm;
    }
	
    struct Page *page;
//(3)从文件加载程序到内存
    struct elfhdr __elf, *elf = &__elf;
	//(3.1)读取elf文件头 
    if ((ret = load_icode_read(fd, elf, sizeof(struct elfhdr), 0)) != 0) {
        goto bad_elf_cleanup_pgdir;
    }

    if (elf->e_magic != ELF_MAGIC) {
        ret = -E_INVAL_ELF;
        goto bad_elf_cleanup_pgdir;
    }

    struct proghdr __ph, *ph = &__ph;
    uint32_t vm_flags, perm, phnum;
    for (phnum = 0; phnum < elf->e_phnum; phnum ++) {
        off_t phoff = elf->e_phoff + sizeof(struct proghdr) * phnum;
	 //(3.2)循环读取程序的每个段的头部 
        if ((ret = load_icode_read(fd, ph, sizeof(struct proghdr), phoff)) != 0) {
            goto bad_cleanup_mmap;
        }
        if (ph->p_type != ELF_PT_LOAD) {
            continue ;
        }
        if (ph->p_filesz > ph->p_memsz) {
            ret = -E_INVAL_ELF;
            goto bad_cleanup_mmap;
        }
        if (ph->p_filesz == 0) {
            continue ;
        }
	//(3.3)设置好虚拟地址与物理地址之间的映射
        vm_flags = 0, perm = PTE_U;
        if (ph->p_flags & ELF_PF_X) vm_flags |= VM_EXEC;
        if (ph->p_flags & ELF_PF_W) vm_flags |= VM_WRITE;
        if (ph->p_flags & ELF_PF_R) vm_flags |= VM_READ;
        if (vm_flags & VM_WRITE) perm |= PTE_W;
        if ((ret = mm_map(mm, ph->p_va, ph->p_memsz, vm_flags, NULL)) != 0) {
            goto bad_cleanup_mmap;
        }
        off_t offset = ph->p_offset;
        size_t off, size;
        uintptr_t start = ph->p_va, end, la = ROUNDDOWN(start, PGSIZE);

        ret = -E_NO_MEM;
	//(3.4)复制数据段和代码段 
        end = ph->p_va + ph->p_filesz;
        while (start < end) {
            if ((page = pgdir_alloc_page(mm->pgdir, la, perm)) == NULL) {
                ret = -E_NO_MEM;
                goto bad_cleanup_mmap;
            }
            off = start - la, size = PGSIZE - off, la += PGSIZE;
            if (end < la) {
                size -= la - end;
            }
            if ((ret = load_icode_read(fd, page2kva(page) + off, size, offset)) != 0) {
                goto bad_cleanup_mmap;
            }
            start += size, offset += size;
        }
	//(3.5)建立BSS段
        end = ph->p_va + ph->p_memsz;

        if (start < la) {
            /* ph->p_memsz == ph->p_filesz */
            if (start == end) {
                continue ;
            }
            off = start + PGSIZE - la, size = PGSIZE - off;
            if (end < la) {
                size -= la - end;
            }
            memset(page2kva(page) + off, 0, size);
            start += size;
            assert((end < la && start == end) || (end >= la && start == la));
        }
        while (start < end) {
            if ((page = pgdir_alloc_page(mm->pgdir, la, perm)) == NULL) {
                ret = -E_NO_MEM;
                goto bad_cleanup_mmap;
            }
            off = start - la, size = PGSIZE - off, la += PGSIZE;
            if (end < la) {
                size -= la - end;
            }
            memset(page2kva(page) + off, 0, size);
            start += size;
        }
    }
	//关闭文件,加载程序结束
    sysfile_close(fd);
//(4)建立相应的虚拟内存映射表
    vm_flags = VM_READ | VM_WRITE | VM_STACK;
    if ((ret = mm_map(mm, USTACKTOP - USTACKSIZE, USTACKSIZE, vm_flags, NULL)) != 0) {
        goto bad_cleanup_mmap;
    }
    assert(pgdir_alloc_page(mm->pgdir, USTACKTOP-PGSIZE , PTE_USER) != NULL);
    assert(pgdir_alloc_page(mm->pgdir, USTACKTOP-2*PGSIZE , PTE_USER) != NULL);
    assert(pgdir_alloc_page(mm->pgdir, USTACKTOP-3*PGSIZE , PTE_USER) != NULL);
    assert(pgdir_alloc_page(mm->pgdir, USTACKTOP-4*PGSIZE , PTE_USER) != NULL);
//(5)设置好用户栈
    mm_count_inc(mm);
    current->mm = mm;
    current->cr3 = PADDR(mm->pgdir);
    lcr3(PADDR(mm->pgdir));

//(6)处理用户栈中传入的参数
    uint32_t argv_size=0, i;
    for (i = 0; i < argc; i ++) {
        argv_size += strnlen(kargv[i],EXEC_MAX_ARG_LEN + 1)+1;
    }

    uintptr_t stacktop = USTACKTOP - (argv_size/sizeof(long)+1)*sizeof(long);
    char** uargv=(char **)(stacktop  - argc * sizeof(char *));
    
    argv_size = 0;
    for (i = 0; i < argc; i ++) {
        uargv[i] = strcpy((char *)(stacktop + argv_size ), kargv[i]);
        argv_size +=  strnlen(kargv[i],EXEC_MAX_ARG_LEN + 1)+1;
    }
    
    stacktop = (uintptr_t)uargv - sizeof(int);
    *(int *)stacktop = argc;
//(7)设置进程的中断帧
    struct trapframe *tf = current->tf;
    memset(tf, 0, sizeof(struct trapframe));
    tf->tf_cs = USER_CS;
    tf->tf_ds = tf->tf_es = tf->tf_ss = USER_DS;
    tf->tf_esp = stacktop;
    tf->tf_eip = elf->e_entry;
    tf->tf_eflags = FL_IF;
    ret = 0;
//(8)错误处理
out:
    return ret;
bad_cleanup_mmap:
    exit_mmap(mm);
bad_elf_cleanup_pgdir:
    put_pgdir(mm);
bad_pgdir_cleanup_mm:
    mm_destroy(mm);
bad_mm:
    goto out;
}


实验结果:

ucore操作系统lab8——实验报告_第1张图片

ok,到目前为止所有ucore实验已经完成,由于时间有限,challenge实验部分未完成。



你可能感兴趣的:(ucore操作系统设计)