Windows下Storm+Kafka+Zookeeper单机开发环境搭建测试

本文主要介绍本地模式下实时流测试环境的搭建,这里主要采用Storm+Kafka+Zookeeper架构,具体步骤如下:

  1. 安装启动Zookeeper,具体步骤见我之前转载的博客http://blog.csdn.net/do_yourself_go_on/article/details/73930809
  2. 安装启动Kafka,具体步骤见我之前转载的博客http://blog.csdn.net/do_yourself_go_on/article/details/73930438;
    这一步中还需要完成这样两件事:
    (1)首先创建一个topic,这里我创建了一个topic,名字为firstTopic
    (2)启动一个Producer,为了后面实时产生数据并进行单词统计测试
  3. 编写Storm的单词计数测试程序
    (1)首先贴出pom.xml文件代码:

        
    <project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0modelVersion>
    
    <groupId>com.stromdemogroupId>
    <artifactId>StormDemoartifactId>
    <version>1.0-SNAPSHOTversion>
    <packaging>jarpackaging>
    
    <properties>
        <project.build.sourceEncoding>UTF-8project.build.sourceEncoding>
        
        <provided.scope>providedprovided.scope>
    properties>
    
    <profiles>
        <profile>
            <id>intellijid>
            <properties>
                <provided.scope>compileprovided.scope>
            properties>
        profile>
    profiles>
    
    <repositories>
    
        
        <repository>
            <id>clojars.orgid>
            <url>http://clojars.org/repourl>
        repository>
    
    repositories>
    
    <dependencies>
    
        <dependency>
            <groupId>org.apache.stormgroupId>
            <artifactId>storm-coreartifactId>
            
            <version>1.1.0version>
            
            
        dependency>
    
        <dependency>
            <groupId>org.apache.stormgroupId>
            <artifactId>storm-kafkaartifactId>
            <version>1.1.0version>
        dependency>
    
        <dependency>
            <groupId>org.apache.kafkagroupId>
            <artifactId>kafka_2.11artifactId>
            <version>0.10.2.0version>
            <exclusions>
                <exclusion>
                    <groupId>org.apache.zookeepergroupId>
                    <artifactId>zookeeperartifactId>
                exclusion>
                <exclusion>
                    <groupId>log4jgroupId>
                    <artifactId>log4jartifactId>
                exclusion>
            exclusions>
        dependency>
    dependencies>
    
    <build>
        <plugins>
            <plugin>
                <artifactId>maven-assembly-pluginartifactId>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependenciesdescriptorRef>
                    descriptorRefs>
                    
                    <archive>
                        <manifest>
                            <mainClass>com.kafka.MyKafkaTopologymainClass>
                        manifest>
                    archive>
                configuration>
            plugin>
            <plugin>
                <groupId>org.apache.maven.pluginsgroupId>
                <artifactId>maven-compiler-pluginartifactId>
                <configuration>
                    <source>1.7source>
                    <target>1.7target>
                configuration>
            plugin>
        plugins>
    build>
    project>

    (2)然后是基于kafka整合的单词计数程序:

    package com.kafka;

    import org.apache.log4j.Logger;
    import org.apache.storm.Config;
    import org.apache.storm.LocalCluster;
    import org.apache.storm.StormSubmitter;
    import org.apache.storm.generated.AlreadyAliveException;
    import org.apache.storm.generated.AuthorizationException;
    import org.apache.storm.generated.InvalidTopologyException;
    import org.apache.storm.kafka.*;
    import org.apache.storm.spout.SchemeAsMultiScheme;
    import org.apache.storm.task.OutputCollector;
    import org.apache.storm.task.TopologyContext;
    import org.apache.storm.topology.OutputFieldsDeclarer;
    import org.apache.storm.topology.TopologyBuilder;
    import org.apache.storm.topology.base.BaseRichBolt;
    import org.apache.storm.tuple.Fields;
    import org.apache.storm.tuple.Tuple;
    import org.apache.storm.tuple.Values;

    import java.util.Arrays;
    import java.util.HashMap;
    import java.util.Iterator;
    import java.util.Map;
    import java.util.concurrent.atomic.AtomicInteger;


    /**
     * Created by Administrator on 2017/6/29.
     */
    public class MyKafkaTopology {

        public static class KafkaWordSplitter extends BaseRichBolt {

            private static final Logger LOG = Logger.getLogger(KafkaWordSplitter.class);
            private static final long serialVersionUID = 886149197481637894L;
            private OutputCollector collector;

            @Override
            public void prepare(Map stormConf, TopologyContext context,
                                OutputCollector collector) {
                this.collector = collector;
            }

            @Override
            public void execute(Tuple input) {
                String line = input.getString(0);
                LOG.info("RECV[kafka -> splitter] " + line);
                String[] words = line.split("\\s+");
                for(String word : words) {
                    LOG.info("EMIT[splitter -> counter] " + word);
                    collector.emit(input, new Values(word, 1));
                }
                collector.ack(input);
            }

            @Override
            public void declareOutputFields(OutputFieldsDeclarer declarer) {
                declarer.declare(new Fields("word", "count"));
            }

        }

        public static class WordCounter extends BaseRichBolt {

            private static final Logger LOG = Logger.getLogger(WordCounter.class);
            private static final long serialVersionUID = 886149197481637894L;
            private OutputCollector collector;
            private Map counterMap;

            @Override
            public void prepare(Map stormConf, TopologyContext context,
                                OutputCollector collector) {
                this.collector = collector;
                this.counterMap = new HashMap();
            }

            @Override
            public void execute(Tuple input) {
                String word = input.getString(0);
                int count = input.getInteger(1);
                LOG.info("RECV[splitter -> counter] " + word + " : " + count);
                AtomicInteger ai = this.counterMap.get(word);
                if(ai == null) {
                    ai = new AtomicInteger();
                    this.counterMap.put(word, ai);
                }
                ai.addAndGet(count);
                System.out.printf("%s\t%d\n", word, ai.intValue());
                collector.ack(input);
                LOG.info("CHECK statistics map: " + this.counterMap);
            }

            @Override
            public void cleanup() {
                LOG.info("The final result:");
                Iterator> iter = this.counterMap.entrySet().iterator();
                while(iter.hasNext()) {
                    Map.Entry entry = iter.next();
                    LOG.info(entry.getKey() + "\t:\t" + entry.getValue().get());
                }

            }

            @Override
            public void declareOutputFields(OutputFieldsDeclarer declarer) {
                declarer.declare(new Fields("word", "count"));
            }
        }

        public static void main(String[] args) throws AlreadyAliveException, InvalidTopologyException, InterruptedException, AuthorizationException {
            String zks = "localhost:2181";
            String topic = "firstTopic";
            //在Zookeeper根目录下面创建一个kafka文件夹,然后创建kafka分区时候也要定位到此文件夹,即--zookeeper localhose:2181/kafka,不然可能会报错误:org.apache.zookeeper.KeeperException$NoNodeException
KeeperErrorCode = NoNode
            String zkRoot = "/kafka"; 
            String id = "word";

            BrokerHosts brokerHosts = new ZkHosts(zks);
            SpoutConfig spoutConf = new SpoutConfig(brokerHosts, topic, zkRoot, id);
            //这一句话一定要写,不然解析kafka中数据会出错:java.lang.RuntimeException: java.lang.ClassCastException: [B cannot be cast to java.lang.String
            spoutConf.scheme = new SchemeAsMultiScheme(new StringScheme());
            //spoutConf.forceFromStart = false;
            spoutConf.zkServers = Arrays.asList(new String[] {"localhost"});
            spoutConf.zkPort = 2181;

            TopologyBuilder builder = new TopologyBuilder();
            builder.setSpout("kafka-reader", new KafkaSpout(spoutConf), 1); // Kafka我们创建了一个1分区的Topic,这里并行度设置为1
            builder.setBolt("word-splitter", new KafkaWordSplitter(), 1).shuffleGrouping("kafka-reader");
            builder.setBolt("word-counter", new WordCounter()).fieldsGrouping("word-splitter", new Fields("word"));

            Config conf = new Config();

            String name = MyKafkaTopology.class.getSimpleName();
            if (args != null && args.length > 0) {
                // Nimbus host name passed from command line
                //conf.put(Config.NIMBUS_HOST, args[0]);
                conf.setNumWorkers(3);
                StormSubmitter.submitTopologyWithProgressBar(name, conf, builder.createTopology());
            } else {
                conf.setMaxTaskParallelism(3);
                LocalCluster cluster = new LocalCluster();
                cluster.submitTopology(name, conf, builder.createTopology());
                //Thread.sleep(60000);
                //cluster.shutdown();
            }
        }
    }
  1. 运行程序,在Producer命令窗里面输入数据,单词计数程序会实时统计出来每个单词的数量,如下图所示:

    Windows下Storm+Kafka+Zookeeper单机开发环境搭建测试_第1张图片

Windows下Storm+Kafka+Zookeeper单机开发环境搭建测试_第2张图片

至此,测试环境搭建成功并通过测试。

你可能感兴趣的:(实时流)