spark上运行xgboost-scala接口

概述
xgboost可以在spark上运行,我用的xgboost的版本是0.7的版本,目前只支持spark2.0以上版本上运行,

编译好jar包,加载到maven仓库里面去:

mvn install:install-file -Dfile=xgboost4j-spark-0.7-jar-with-dependencies.jar -DgroupId=ml.dmlc -DartifactId=xgboost4j-spark -Dversion=0.7 -Dpackaging=jar


添加依赖:

            ml.dmlc
            xgboost4j-spark
            0.7
        

        
            org.apache.spark
            spark-core_2.10
            2.0.0
        

        
            org.apache.spark
            spark-mllib_2.10
            2.0.0
        

    

RDD接口:

package com.meituan.spark_xgboost
import org.apache.log4j.{ Level, Logger }
import org.apache.spark.{ SparkConf, SparkContext }
import ml.dmlc.xgboost4j.scala.spark.XGBoost
import org.apache.spark.sql.{ SparkSession, Row }
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.ml.feature.LabeledPoint
import org.apache.spark.ml.linalg.Vectors
object XgboostR {
 
 
  def main(args: Array[String]): Unit = {
    Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)
    Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)
    val spark = SparkSession.builder.master("local").appName("example").
      config("spark.sql.warehouse.dir", s"file:///Users/shuubiasahi/Documents/spark-warehouse").
      config("spark.sql.shuffle.partitions", "20").getOrCreate()
    spark.conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
      val path = "/Users/shuubiasahi/Documents/workspace/xgboost/demo/data/"
  val trainString = "agaricus.txt.train"
  val testString = "agaricus.txt.test"
    val train = MLUtils.loadLibSVMFile(spark.sparkContext, path + trainString)
    val test = MLUtils.loadLibSVMFile(spark.sparkContext, path + testString)
    val traindata = train.map { x =>
      val f = x.features.toArray
      val v = x.label
      LabeledPoint(v, Vectors.dense(f))
    }
    val testdata = test.map { x =>
      val f = x.features.toArray
      val v = x.label
       Vectors.dense(f)
    }
    
 
    val numRound = 15
    
     //"objective" -> "reg:linear", //定义学习任务及相应的学习目标
      //"eval_metric" -> "rmse", //校验数据所需要的评价指标  用于做回归
    
    val paramMap = List(
      "eta" -> 1f,
      "max_depth" ->5, //数的最大深度。缺省值为6 ,取值范围为:[1,∞] 
      "silent" -> 1, //取0时表示打印出运行时信息,取1时表示以缄默方式运行,不打印运行时信息。缺省值为0 
      "objective" -> "binary:logistic", //定义学习任务及相应的学习目标
      "lambda"->2.5,
      "nthread" -> 1 //XGBoost运行时的线程数。缺省值是当前系统可以获得的最大线程数
      ).toMap
    println(paramMap)
    
 
    val model = XGBoost.trainWithRDD(traindata, paramMap, numRound, 55, null, null, useExternalMemory = false, Float.NaN)
    print("sucess")
 
    val result=model.predict(testdata)
    result.take(10).foreach(println)
    spark.stop();
   
  }
 
}


DataFrame接口:
package com.meituan.spark_xgboost
import org.apache.log4j.{ Level, Logger }
import org.apache.spark.{ SparkConf, SparkContext }
import ml.dmlc.xgboost4j.scala.spark.XGBoost
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
import org.apache.spark.sql.{ SparkSession, Row }
object XgboostD {
  def main(args: Array[String]): Unit = {
    Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)
    Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)
    val spark = SparkSession.builder.master("local").appName("example").
      config("spark.sql.warehouse.dir", s"file:///Users/shuubiasahi/Documents/spark-warehouse").
      config("spark.sql.shuffle.partitions", "20").getOrCreate()
    spark.conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
    val path = "/Users/shuubiasahi/Documents/workspace/xgboost/demo/data/"
    val trainString = "agaricus.txt.train"
    val testString = "agaricus.txt.test"
 
    val train = spark.read.format("libsvm").load(path + trainString).toDF("label", "feature")
 
    val test = spark.read.format("libsvm").load(path + testString).toDF("label", "feature")
 
    val numRound = 15
 
    //"objective" -> "reg:linear", //定义学习任务及相应的学习目标
    //"eval_metric" -> "rmse", //校验数据所需要的评价指标  用于做回归
 
    val paramMap = List(
      "eta" -> 1f,
      "max_depth" -> 5, //数的最大深度。缺省值为6 ,取值范围为:[1,∞] 
      "silent" -> 1, //取0时表示打印出运行时信息,取1时表示以缄默方式运行,不打印运行时信息。缺省值为0 
      "objective" -> "binary:logistic", //定义学习任务及相应的学习目标
      "lambda" -> 2.5,
      "nthread" -> 1 //XGBoost运行时的线程数。缺省值是当前系统可以获得的最大线程数
      ).toMap
    val model = XGBoost.trainWithDataFrame(train, paramMap, numRound, 45, obj = null, eval = null, useExternalMemory = false, Float.NaN, "feature", "label")
    val predict = model.transform(test)
 
    val scoreAndLabels = predict.select(model.getPredictionCol, model.getLabelCol)
      .rdd
      .map { case Row(score: Double, label: Double) => (score, label) }
 
    //get the auc
    val metric = new BinaryClassificationMetrics(scoreAndLabels)
    val auc = metric.areaUnderROC()
    println("auc:" + auc)
 
  }
 
}

--------------------- 
作者:旭旭_哥 
来源:CSDN 
原文:https://blog.csdn.net/luoyexuge/article/details/71422270 
版权声明:本文为博主原创文章,转载请附上博文链接!

你可能感兴趣的:(机器学习,spark,scala)