lintcode练习- 24. LFU缓存:缓存淘汰算法--LFU算法及python实现

1. LFU类

1.1. LFU

1.1.1. 原理

LFU(Least Frequently Used)算法根据数据的历史访问频率来淘汰数据,其核心思想是“如果数据过去被访问多次,那么将来被访问的频率也更高”。

1.1.2. 实现

LFU的每个数据块都有一个引用计数,所有数据块按照引用计数排序,具有相同引用计数的数据块则按照时间排序。

具体实现如下:

 

1. 新加入数据插入到队列尾部(因为引用计数为1);

2. 队列中的数据被访问后,引用计数增加,队列重新排序;

3. 当需要淘汰数据时,将已经排序的列表最后的数据块删除。

1.1.3. 分析

l 命中率

一般情况下,LFU效率要优于LRU,且能够避免周期性或者偶发性的操作导致缓存命中率下降的问题。但LFU需要记录数据的历史访问记录,一旦数据访问模式改变,LFU需要更长时间来适用新的访问模式,即:LFU存在历史数据影响将来数据的“缓存污染”效用。

l 复杂度

需要维护一个队列记录所有数据的访问记录,每个数据都需要维护引用计数。

l 代价

需要记录所有数据的访问记录,内存消耗较高;需要基于引用计数排序,性能消耗较高。

 

1.2. LFU*

1.2.1. 原理

基于LFU的改进算法,其核心思想是“只淘汰访问过一次的数据”。

1.2.2. 实现

LFU*数据缓存实现和LFU一样,不同的地方在于淘汰数据时,LFU*只淘汰引用计数为1的数据,且如果所有引用计数为1的数据大小之和都没有新加入的数据那么大,则不淘汰数据,新的数据也不缓存。

1.2.3. 分析

l 命中率

和LFU类似,但由于其不淘汰引用计数大于1的数据,则一旦访问模式改变,LFU*无法缓存新的数据,因此这个算法的应用场景比较有限。

l 复杂度

需要维护一个队列,记录引用计数为1的数据。

l 代价

相比LFU要低很多,不需要维护所有数据的历史访问记录,只需要维护引用次数为1的数据,也不需要排序。
 

1.3. LFU-Aging

1.3.1. 原理

基于LFU的改进算法,其核心思想是“除了访问次数外,还要考虑访问时间”。这样做的主要原因是解决LFU缓存污染的问题。

1.3.2. 实现

虽然LFU-Aging考虑时间因素,但其算法并不直接记录数据的访问时间,而是通过平均引用计数来标识时间。

LFU-Aging在LFU的基础上,增加了一个最大平均引用计数。当当前缓存中的数据“引用计数平均值”达到或者超过“最大平均引用计数”时,则将所有数据的引用计数都减少。减少的方法有多种,可以直接减为原来的一半,也可以减去固定的值等。

1.3.3. 分析

l 命中率

LFU-Aging的效率和LFU类似,当访问模式改变时,LFU-Aging能够更快的适用新的数据访问模式,效率要高。

l 复杂度

在LFU的基础上增加平均引用次数判断和处理。

l 代价

和LFU类似,当平均引用次数超过指定阈值(Aging)后,需要遍历访问列表。
 

 

1.4. LFU*-Aging

1.4.1. 原理

LFU*和LFU-Aging的合成体。

1.4.2. 实现

略。

1.4.3. 分析

l 命中率

和LFU-Aging类似。

l 复杂度

比LFU-Aging简单一些,不需要基于引用计数排序。

l 代价

比LFU-Aging少一些,不需要基于引用计数排序。

 

1.5. Window-LFU

1.5.1. 原理

Windows-LFU是LFU的一个改进版,差别在于Window-LFU并不记录所有数据的访问历史,而只是记录过去一段时间内的访问历史,这就是Window的由来,基于这个原因,传统的LFU又被称为“Perfect-LFU”。

1.5.2. 实现

与LFU的实现基本相同,差别在于不需要记录所有数据的历史访问数据,而只记录过去一段时间内的访问历史。具体实现如下:

 

1)记录了过去W个访问记录;

2)需要淘汰时,将W个访问记录按照LFU规则排序淘汰

 

举例如下:

假设历史访问记录长度设为9,缓存大小为3,图中不同颜色代表针对不同数据块的访问,同一颜色代表针对同一数据的多次访问。

样例1:黄色访问3次,蓝色和橘色都是两次,橘色更新,因此缓存黄色、橘色、蓝色三个数据块

样例2:绿色访问3次,蓝色两次,暗红两次,蓝色更新,因此缓存绿色、蓝色、暗红三个数据块

 

1.5.3. 分析

l 命中率

Window-LFU的命中率和LFU类似,但Window-LFU会根据数据的访问模式而变化,能够更快的适应新的数据访问模式,”缓存污染“问题不严重。

l 复杂度

需要维护一个队列,记录数据的访问流历史;需要排序。

l 代价

Window-LFU只记录一部分的访问历史记录,不需要记录所有的数据访问历史,因此内存消耗和排序消耗都比LFU要低。
 

1.6. LFU类算法对比

由于不同的访问模型导致命中率变化较大,此处对比仅基于理论定性分析,不做定量分析。

对比点

对比

命中率

Window-LFU/LFU-Aging > LFU*-Aging > LFU > LFU*

复杂度

LFU-Aging > LFU>  LFU*-Aging  >Window-LFU > LFU*

代价

LFU-Aging > LFU > Window-LFU > LFU*-Aging  > LFU*

解题思路:

 主要利用嵌套字典,内层字典是有序字典,使用OrderedDict会根据放入元素的先后顺序进行排序

from collections import OrderedDict
from collections import defaultdict
class LFUCache:
    """
    @param: capacity: An integer
    """
    def __init__(self, capacity):
        # do intialization if necessary
        self.mincount = 0
        self.capacity = capacity
        self.cache = {}
        self.visited = {}
        #默认字典嵌套一个有序字典,外层字典的键是访问次数,有序字典会根据放入元素的先后顺序进行排序        self.key_list = defaultdict(OrderedDict)

    """
    @param: key: An integer
    @param: value: An integer
    @return: nothing
    """
    def set(self, key, value):
        # write your code here
        #如果该key已经存在,修改value并且次数+1
        if key in self.cache:
            self.cache[key] = value
            self.get(key)
            return
        
        #如果缓存满了,则删除最少访问次数
        if len(self.cache) == self.capacity:
            #找到最小访问次数
            temp_key, tmep_val = next(iter(self.key_list[self.mincount].items()))
                
            # min_visit = min(self.visited, key=lambda x: self.visited[x])
            del self.cache[temp_key]
            del self.visited[temp_key]
            del self.key_list[self.mincount][temp_key]
            
            self.cache[key] = value
            self.visited[key] = 0
        
        #添加时默认都是1,所以都放在访问次数为1的层中
        self.mincount = 1
        self.cache[key] = value
        self.visited[key] = 1
        #对记录字典进行赋值{1:{key:none, key1:none}}
        self.key_list[1][key] = None

    """
    @param: key: An integer
    @return: An integer
    """
    def get(self, key):
        # write your code here
        if key not in self.cache:
            return -1
        
        #取出该key的访问次数
        count = self.visited[key]
        #对访问次数进行+1
        self.visited[key] += 1
        #对记录字典进行更新
        self.key_list[count].pop(key)
        self.key_list[count+1][key] = None
        
        #如果访问次数等于最小访问次数,并且该次数下已经没有值了,则最小访问次数+1,为下次加入做准备
        if count == self.mincount and len(self.key_list[count]) == 0:
            self.mincount += 1
        
        return self.cache[key]
        

 

你可能感兴趣的:(python,#,算法,#,lintcode,#,lintcode练习笔记)