#! /usr/bin/env python3
# coding=utf-8
#================================================================
# Copyright (C) 2018 * Ltd. All rights reserved.
#
# Editor : VIM
# File name : yolov3.py
# Author : YunYang1994
# Created date: 2018-11-21 18:41:35
# Description : YOLOv3: An Incremental Improvement
#
#================================================================
import tensorflow as tf
from core import common
slim = tf.contrib.slim
class darknet53(object):
"""network for performing feature extraction"""
def __init__(self, inputs):
self.outputs = self.forward(inputs)
def _darknet53_block(self, inputs, filters):
"""
implement residuals block in darknet53
"""
# 类似于残差网络的结构,通过1*1和3*3的卷积之后将input和output相加送入下一层
shortcut = inputs
inputs = common._conv2d_fixed_padding(inputs, filters * 1, 1)
inputs = common._conv2d_fixed_padding(inputs, filters * 2, 3)
inputs = inputs + shortcut
return inputs
def forward(self, inputs):
inputs = common._conv2d_fixed_padding(inputs, 32, 3, strides=1)
inputs = common._conv2d_fixed_padding(inputs, 64, 3, strides=2)
inputs = self._darknet53_block(inputs, 32)
inputs = common._conv2d_fixed_padding(inputs, 128, 3, strides=2)
for i in range(2):
inputs = self._darknet53_block(inputs, 64)
inputs = common._conv2d_fixed_padding(inputs, 256, 3, strides=2)
for i in range(8):
inputs = self._darknet53_block(inputs, 128)#27层
route_1 = inputs
inputs = common._conv2d_fixed_padding(inputs, 512, 3, strides=2)
for i in range(8):
inputs = self._darknet53_block(inputs, 256)
route_2 = inputs
inputs = common._conv2d_fixed_padding(inputs, 1024, 3, strides=2)
for i in range(4):
inputs = self._darknet53_block(inputs, 512)
#大小分别为[52,52,256] [26,26,512] [13,13,1024]
return route_1, route_2, inputs
class yolov3(object):
def __init__(self, num_classes, anchors,
batch_norm_decay=0.9, leaky_relu=0.1):
# self._ANCHORS = [[10 ,13], [16 , 30], [33 , 23],
# [30 ,61], [62 , 45], [59 ,119],
# [116,90], [156,198], [373,326]]
self._ANCHORS = anchors
self._BATCH_NORM_DECAY = batch_norm_decay
self._LEAKY_RELU = leaky_relu
self._NUM_CLASSES = num_classes
self.feature_maps = [] # [[None, 13, 13, 255], [None, 26, 26, 255], [None, 52, 52, 255]]
def _yolo_block(self, inputs, filters):
inputs = common._conv2d_fixed_padding(inputs, filters * 1, 1)
inputs = common._conv2d_fixed_padding(inputs, filters * 2, 3)
inputs = common._conv2d_fixed_padding(inputs, filters * 1, 1)
inputs = common._conv2d_fixed_padding(inputs, filters * 2, 3)
inputs = common._conv2d_fixed_padding(inputs, filters * 1, 1)
route = inputs
inputs = common._conv2d_fixed_padding(inputs, filters * 2, 3)
return route, inputs
#输出[gride,gride,3*(5+80)]大小的feature map
def _detection_layer(self, inputs, anchors):
num_anchors = len(anchors)
feature_map = slim.conv2d(inputs, num_anchors * (5 + self._NUM_CLASSES), 1,
stride=1, normalizer_fn=None,
activation_fn=None,
biases_initializer=tf.zeros_initializer())
return feature_map
#输入[gride,gride,3*(5+80)]大小的feature map,以及anchors,输出每个cell[7*7*1*2]左上角坐标
#box[13*13*3*4]坐标,box置信率[13*13*3*1]以及class[13*13*3*80]
def _reorg_layer(self, feature_map, anchors):
num_anchors = len(anchors) # num_anchors=3
grid_size = feature_map.shape.as_list()[1:3] #从feature map中求出cell的面积,也就是2,3的维度
# 下采样的倍率
stride = tf.cast(self.img_size
feature_map = tf.reshape(feature_map,
[-1, grid_size[0], grid_size[1], #将特征图变成[batch_size,13,13,3,5+num_cls]
num_anchors, 5 + self._NUM_CLASSES])
box_centers, box_sizes, conf_logits, prob_logits = tf.split(
feature_map, [2, 2, 1, self._NUM_CLASSES], axis=-1) #将feature map的最后一个维度分成2,2,1,num_cls,也就是box_centers[13*13*3*2]
#box_sizes[13*13*3*2],conf_logits[13*13*3*1],prob_logits[13*13*3*80]
box_centers = tf.nn.sigmoid(box_centers) #将box的中心限制在当前cell中
grid_x = tf.range(grid_size[1], dtype=tf.int32)
grid_y = tf.range(grid_size[0], dtype=tf.int32)
a, b = tf.meshgrid(grid_x, grid_y) #a,b分别为13*13的矩阵,a每一行都是0-12,b的每一列都是0-12
x_offset = tf.reshape(a, (-1, 1))
y_offset = tf.reshape(b, (-1, 1))
x_y_offset = tf.concat([x_offset, y_offset], axis=-1)
x_y_offset = tf.reshape(x_y_offset, [grid_size[0], grid_size[1], 1, 2]) #feature map中每个cell左上角的坐标
x_y_offset = tf.cast(x_y_offset, tf.float32) #转化为float[7*7*1*2]
box_centers = box_centers + x_y_offset #中心点坐标 = 相对于cell左上角的坐标+offset
box_centers = box_centers * stride[::-1] #将中心点坐标按比例放大也就是扩展到原图像中
box_sizes = tf.exp(box_sizes) * anchors # anchors -> [w, h]计算box的长宽[13*13*3*2]
boxes = tf.concat([box_centers, box_sizes], axis=-1) #返回box的中心点坐标以及长宽[13*13*3*4]
return x_y_offset, boxes, conf_logits, prob_logits
#x_y_offset[7*7*1*2],boxes[13*13*3*4],conf_logits[13*13*3*1],prob_logits[13*13*3*80]
#上采用函数
@staticmethod
def _upsample(inputs, out_shape):
new_height, new_width = out_shape[1], out_shape[2]
inputs = tf.image.resize_nearest_neighbor(inputs, (new_height, new_width)) #最近邻插值
inputs = tf.identity(inputs, name='upsampled')
return inputs
# @staticmethod
# def _upsample(inputs, out_shape):
# """
# replace resize_nearest_neighbor with conv2d_transpose To support TensorRT 5 optimization
# """
# new_height, new_width = out_shape[1], out_shape[2]
# filters = 256 if (new_height == 26 and new_width==26) else 128
# inputs = tf.layers.conv2d_transpose(inputs, filters, kernel_size=3, padding='same',
# strides=(2,2), kernel_initializer=tf.ones_initializer())
# return inputs
#产生3张不同尺度的特征图,主要是融合了低尺度的信息
def forward(self, inputs, is_training=False, reuse=False):
"""
Creates YOLO v3 model.
:param inputs: a 4-D tensor of size [batch_size, height, width, channels].
Dimension batch_size may be undefined. The channel order is RGB.
:param is_training: whether is training or not.
:param reuse: whether or not the network and its variables should be reused.
:return:
"""
# it will be needed later on
self.img_size = tf.shape(inputs)[1:3] #input的1,2维代表图片的size
# set batch norm params
batch_norm_params = {
'decay': self._BATCH_NORM_DECAY,
'epsilon': 1e-05,
'scale': True,
'is_training': is_training,
'fused': None, # Use fused batch norm if possible.
}
# Set activation_fn and parameters for conv2d, batch_norm.
with slim.arg_scope([slim.conv2d, slim.batch_norm, common._fixed_padding],reuse=reuse):
with slim.arg_scope([slim.conv2d], normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params,
biases_initializer=None,
activation_fn=lambda x: tf.nn.leaky_relu(x, alpha=self._LEAKY_RELU)):
with tf.variable_scope('darknet-53'):
route_1, route_2, inputs = darknet53(inputs).outputs
#darknet输出3个不同尺度的feature map,尺度越来越小,特征等级越来越高
with tf.variable_scope('yolo-v3'):
route, inputs = self._yolo_block(inputs, 512) #经过darknet之后的输出再过一个yolo_block
# 将feature map转化成最终检测的形式[cell_size,cell_size,num_anchors * (5 + self._NUM_CLASSES)]
feature_map_1 = self._detection_layer(inputs, self._ANCHORS[6:9])
#feature map1是直接通过dark_net,yolo_block以及最终的detection_layer产生的
feature_map_1 = tf.identity(feature_map_1, name='feature_map_1') #大小为[13*13*255],
#将route上采样到route_2大小并且与route_2相加在经过yolo_block,detection然后输出第二张feature map
inputs = common._conv2d_fixed_padding(route, 256, 1) #route[13*13*512] feature map1产生前一层的输出
upsample_size = route_2.get_shape().as_list() #route2[26,26,512] dark_net中一种尺度的输出
inputs = self._upsample(inputs, upsample_size) #将route上采样到route2大小然后在最后一个维度上合并
inputs = tf.concat([inputs, route_2], axis=3) #[26,26,768]
route, inputs = self._yolo_block(inputs, 256) #经过darknet之后的输出再过一个yolo_block
feature_map_2 = self._detection_layer(inputs, self._ANCHORS[3:6])
feature_map_2 = tf.identity(feature_map_2, name='feature_map_2')#大小为[26,26,256]
#重复上述操作又产生一张融合了route_1的特征图
inputs = common._conv2d_fixed_padding(route, 128, 1)
upsample_size = route_1.get_shape().as_list()
inputs = self._upsample(inputs, upsample_size)
inputs = tf.concat([inputs, route_1], axis=3)
route, inputs = self._yolo_block(inputs, 128)
feature_map_3 = self._detection_layer(inputs, self._ANCHORS[0:3])
feature_map_3 = tf.identity(feature_map_3, name='feature_map_3') #大小为[52,52,255]
return feature_map_1, feature_map_2, feature_map_3
def _reshape(self, x_y_offset, boxes, confs, probs):
grid_size = x_y_offset.shape.as_list()[:2] #offset前两维为gride_size
boxes = tf.reshape(boxes, [-1, grid_size[0]*grid_size[1]*3, 4]) #将box变成[batch_size,grid_size[0]*grid_size[1]*3, 4]
confs = tf.reshape(confs, [-1, grid_size[0]*grid_size[1]*3, 1]) #cnonfs变成[batch_size,grid_size[0]*grid_size[1]*3, 1]
probs = tf.reshape(probs, [-1, grid_size[0]*grid_size[1]*3, self._NUM_CLASSES]) #将pro变成 [batch_size,grid_size[0]*grid_size[1]*3, 80]
return boxes, confs, probs
def predict(self, feature_maps):
"""
Note: given by feature_maps, compute the receptive field
and get boxes, confs and class_probs
input_argument: feature_maps -> [None, 13, 13, 255],
[None, 26, 26, 255],
[None, 52, 52, 255],
out_put:
boxes = [batch_size,(13*13+26*26+52*52)*3,4] 为左上角右上角的形式
confs = [batch_size,(13*13+26*26+52*52)*3,1]
probs = [batch_size,(13*13+26*26+52*52)*3,80]
"""
# 每个特征图有三种不同大小比例的anchor,小的特征图有大的anchor,表示在小的图上检测大的物体
feature_map_1, feature_map_2, feature_map_3 = feature_maps
feature_map_anchors = [(feature_map_1, self._ANCHORS[6:9]),
(feature_map_2, self._ANCHORS[3:6]),
(feature_map_3, self._ANCHORS[0:3]),]
# 返回3个元祖,每个元祖中包括x_y_offset,boxes,conf_logits,prob_logits
results = [self._reorg_layer(feature_map, anchors) for (feature_map, anchors) in feature_map_anchors]
boxes_list, confs_list, probs_list = [], [], []
"""
将结果reshape之后装入3个list中,
其中box = [batch_size,grid_size[0]*grid_size[1]*3, 4]
cnonfs = [batch_size,grid_size[0]*grid_size[1]*3, 1]
pro = [batch_size,grid_size[0]*grid_size[1]*3, 80]
"""
for result in results:
boxes, conf_logits, prob_logits = self._reshape(*result)
confs = tf.sigmoid(conf_logits)
probs = tf.sigmoid(prob_logits)
boxes_list.append(boxes)
confs_list.append(confs)
probs_list.append(probs)
#三个列表中分别存放着三个feature map的box、confs、probs
# 将三个feature map产生的box在第一维度上聚合,相当于级联,[batch_size,grid_size[0]*grid_size[1]*3*3,4]
boxes = tf.concat(boxes_list, axis=1)
confs = tf.concat(confs_list, axis=1) #同上
probs = tf.concat(probs_list, axis=1) #同上
#将box[中心点,长宽]的形式改为[左上角,右上角的形式]
#先将最后一个维度等分成4份每份[batch_size,grid_size[0]*grid_size[1]*3*3,1]
center_x, center_y, width, height = tf.split(boxes, [1,1,1,1], axis=-1)
x0 = center_x - width / 2.
y0 = center_y - height / 2.
x1 = center_x + width / 2.
y1 = center_y + height / 2.
#转化完毕再将最后一个维度聚合,变回原来的样子
boxes = tf.concat([x0, y0, x1, y1], axis=-1)
return boxes, confs, probs
def compute_loss(self, pred_feature_map, y_true, ignore_thresh=0.5, max_box_per_image=8):
"""
Note: compute the loss
Arguments: y_pred, list -> [feature_map_1, feature_map_2, feature_map_3]
the shape of [None, 13, 13, 3*85]. etc
"""
loss_xy, loss_wh, loss_conf, loss_class = 0., 0., 0., 0.
total_loss = 0.
# total_loss, rec_50, rec_75, avg_iou = 0., 0., 0., 0.
_ANCHORS = [self._ANCHORS[6:9], self._ANCHORS[3:6], self._ANCHORS[0:3]]
for i in range(len(pred_feature_map)):
result = self.loss_layer(pred_feature_map[i], y_true[i], _ANCHORS[i])
loss_xy += result[0]
loss_wh += result[1]
loss_conf += result[2]
loss_class += result[3]
total_loss = loss_xy + loss_wh + loss_conf + loss_class
return [total_loss, loss_xy, loss_wh, loss_conf, loss_class]
def loss_layer(self, feature_map_i, y_true, anchors):
# size in [h, w] format! don't get messed up!
grid_size = tf.shape(feature_map_i)[1:3]
grid_size_ = feature_map_i.shape.as_list()[1:3]
#将label转换成标准格式
y_true = tf.reshape(y_true, [-1, grid_size_[0], grid_size_[1], 3, 5+self._NUM_CLASSES])
# the downscale ratio in height and weight下采样的比率
ratio = tf.cast(self.img_size / grid_size, tf.float32)
# N: batch_size,feature map的第一个维度为batch_size
N = tf.cast(tf.shape(feature_map_i)[0], tf.float32)
#返回off_set,pred_boxes(原图像中)、pred_conf_logits、pred_prob_logits
x_y_offset, pred_boxes, pred_conf_logits, pred_prob_logits = self._reorg_layer(feature_map_i, anchors)
# shape: take 416x416 input image and 13*13 feature_map for example:
# [N, 13, 13, 3, 1] 第五个维度表示是否含有物体
object_mask = y_true[..., 4:5]
# shape: [N, 13, 13, 3, 4] & [N, 13, 13, 3] ==> [V, 4]
# V: num of true gt box,将object_mask转化为布尔向量,除去那些假的box,留下真的box
valid_true_boxes = tf.boolean_mask(y_true[..., 0:4], tf.cast(object_mask[..., 0], 'bool'))
# shape: [V, 2] 有v个ground_truth
valid_true_box_xy = valid_true_boxes[:, 0:2] #gtbox中心点坐标
valid_true_box_wh = valid_true_boxes[:, 2:4] #gtbox长宽
# shape: [N, 13, 13, 3, 2]
pred_box_xy = pred_boxes[..., 0:2] #预测box中心点
pred_box_wh = pred_boxes[..., 2:4] #预测box长宽
# calc iou
# shape: [N, 13, 13, 3, V]计算预测和label的iou
iou = self._broadcast_iou(valid_true_box_xy, valid_true_box_wh, pred_box_xy, pred_box_wh)
# shape: [N, 13, 13, 3] 找出每个box对应的最大iou,也就是说每个box只去预测与他iou最大的gt
best_iou = tf.reduce_max(iou, axis=-1)
# get_ignore_mask 形成mask,也就是要删除iou小于0.5的box
ignore_mask = tf.cast(best_iou < 0.5, tf.float32)
# shape: [N, 13, 13, 3, 1]
ignore_mask = tf.expand_dims(ignore_mask, -1)
# get xy coordinates in one cell from the feature_map
# numerical range: 0 ~ 1
# shape: [N, 13, 13, 3, 2] 转化到feature map上
true_xy = y_true[..., 0:2] / ratio[::-1] - x_y_offset
pred_xy = pred_box_xy / ratio[::-1] - x_y_offset
# get_tw_th, numerical range: 0 ~ 1
# shape: [N, 13, 13, 3, 2] 转化到feature map上
true_tw_th = y_true[..., 2:4] / anchors
pred_tw_th = pred_box_wh / anchors
# for numerical stability 判断true_tw_th是否为0,如果为0则令true_tw_th=1,否则保持不变
true_tw_th = tf.where(condition=tf.equal(true_tw_th, 0),
x=tf.ones_like(true_tw_th), y=true_tw_th)
pred_tw_th = tf.where(condition=tf.equal(pred_tw_th, 0),
x=tf.ones_like(pred_tw_th), y=pred_tw_th)
#使true_tw_th在1e-9, 1e9之间,不在这之间的用边界值表示
true_tw_th = tf.log(tf.clip_by_value(true_tw_th, 1e-9, 1e9))
pred_tw_th = tf.log(tf.clip_by_value(pred_tw_th, 1e-9, 1e9))
# box size punishment:
# box with smaller area has bigger weight. This is taken from the yolo darknet C source code.
# shape: [N, 13, 13, 3, 1]
#框越小,权值越大
box_loss_scale = 2. - (y_true[..., 2:3] / tf.cast(self.img_size[1], tf.float32)) * (y_true[..., 3:4] / tf.cast(self.img_size[0], tf.float32))
# shape: [N, 13, 13, 3, 1]
#objec_mask表示是否含有物体,box越小box_loss_scale越大,由于小的物体即使相对于他的scal变化了很大但是总体上看来还是比较小
#因此我们给他一个较大的权重,这和yolo1中取根号的道理是一样的
xy_loss = tf.reduce_sum(tf.square(true_xy - pred_xy) * object_mask * box_loss_scale) / N
wh_loss = tf.reduce_sum(tf.square(true_tw_th - pred_tw_th) * object_mask * box_loss_scale) / N
# shape: [N, 13, 13, 3, 1]
#对于含有物体,我们希望object_mask和pred_conf_logits很接近,也就是含有物体的box我们希望pred_conf_logits = 1
#对于不含有物体,我们也希望object_mask和pred_conf_logits很接近,对于不含有物体的box我们希望pred_conf_logits = 0
conf_pos_mask = object_mask
conf_neg_mask = (1 - object_mask) * ignore_mask
conf_loss_pos = conf_pos_mask * tf.nn.sigmoid_cross_entropy_with_logits(labels=object_mask, logits=pred_conf_logits)
conf_loss_neg = conf_neg_mask * tf.nn.sigmoid_cross_entropy_with_logits(labels=object_mask, logits=pred_conf_logits)
conf_loss = tf.reduce_sum(conf_loss_pos + conf_loss_neg) / N
# shape: [N, 13, 13, 3, 1]类别损失
class_loss = object_mask * tf.nn.sigmoid_cross_entropy_with_logits(labels=y_true[..., 5:], logits=pred_prob_logits)
class_loss = tf.reduce_sum(class_loss) / N
return xy_loss, wh_loss, conf_loss, class_loss
def _broadcast_iou(self, true_box_xy, true_box_wh, pred_box_xy, pred_box_wh):
'''
maintain an efficient way to calculate the ios matrix between ground truth true boxes and the predicted boxes
note: here we only care about the size match
'''
# shape:
# true_box_??: [V, 2]
# pred_box_??: [N, 13, 13, 3, 2]
# shape: [N, 13, 13, 3, 1, 2]倒数第二维后面增加一个维度
pred_box_xy = tf.expand_dims(pred_box_xy, -2)
pred_box_wh = tf.expand_dims(pred_box_wh, -2)
# shape: [1, V, 2]
true_box_xy = tf.expand_dims(true_box_xy, 0)
true_box_wh = tf.expand_dims(true_box_wh, 0)
# [N, 13, 13, 3, 1, 2] & [1, V, 2] ==> [N, 13, 13, 3, V, 2]
intersect_mins = tf.maximum(pred_box_xy - pred_box_wh / 2.,
true_box_xy - true_box_wh / 2.)
intersect_maxs = tf.minimum(pred_box_xy + pred_box_wh / 2.,
true_box_xy + true_box_wh / 2.)
intersect_wh = tf.maximum(intersect_maxs - intersect_mins, 0.)
# shape: [N, 13, 13, 3, V]
intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
# shape: [N, 13, 13, 3, 1]
pred_box_area = pred_box_wh[..., 0] * pred_box_wh[..., 1]
# shape: [1, V]
true_box_area = true_box_wh[..., 0] * true_box_wh[..., 1]
# [N, 13, 13, 3, V]
iou = intersect_area / (pred_box_area + true_box_area - intersect_area)
return iou
```如有错误欢迎指正,谢谢!