CSAPP:第二章 - 2.4 练习题答案

45

   

小数值

二进制表示

十进制表示

1/8

0.001

0.125

3/4

1/2+1/4 = 0.11

0.75

25/16

(16+8+1)/16  = (11001b)/16 = 1.1001

1.5625

(101011b)/2^4 = 43/16

10.1011

2.6875

(1001b)/2^3 = 9/8

1.001

1.125

(5*8+7)/8=47/8

101111b/8 = 101.111

5.875

(51/16)

110011b/16 = 11.0011

3.1875


46

A: 0.1 -x 的二进制表示

    0.1 = 0.0001100110011001100110011[0011]

      x = 0.0001100110011001100110000

0.1 - x = 0.0000000000000000000000011[0011]...

B: 0.1 - x的近似十进制值

x = 0.0001100110011001100110000 

  = 00001100110011001100110000 / 2^25 

  = 110011001100110011 / 2^21 

  = 209715/2097152 

  = 0.0999999046325684

0.1 - x = 0.0000000953674316 = 0.953674316 * 10^(-7)

C: 100h = 360000s => count = 3600000

count * x = (3600000*209715)/2097152 = 359999.6566772461s

deta = 3600000 - 359999.6566772461 = 0.34332275390625s

误差为 0.34332275390625s秒。

D:  每秒误差 = (0.1-x) * 10 * 2000m/s= 0.953674316 * 10^(-6)s *2000m/s = 1.907348632 * 10^(-3)s  ~= 1.91毫米.

   


47

Bias = 2^(k-1) -1 = 2^1 - 1 = 1

   

e

E

2^E

f

M

2^E * M

V

十进制

0 00 00

0

0

1

0

0

0

0

0

0 00 01

0

0

1

1/4

1/4

1/4

1/4

0.25

0 00 10

0

0

1

1/2

1/2

2/4

1/2

0.5

0 00 11

0

0

1

3/4

3/4

3/4

3/4

0.75

0 01 00

1

0

1

0

1

4/4

1

1

0 01 01

1

0

1

1/4

5/4

5/4

5/4

1.25

0 01 10

1

0

1

1/2

3/2

6/4

3/2

1.5

0 01 11

1

0

1

3/4

7/4

7/4

7/4

1.75

0 10 00

2

1

2

0

1

8/4

2

2

0 10 01

2

1

2

1/4

5/4

10/4

5/2

2.5

0 10 10

2

1

2

1/2

3/2

12/4

3

3

0 10 11

2

1

2

3/4

7/4

14/4

7/2

3.5

0 11 00

-

-

-

-

-

-

正无穷

-

0 11 01

-

-

-

-

-

-

NaN

-

0 11 10

-

-

-

-

-

-

NaN

-

0 11 11

-

-

-

-

-

-

NaN

-

   

48

3510593 = 1101011001000101000001b

3510593.0  = 0x4a564504 = 1001010010101100100010100000100 = 0 10010100 10101100100010100000100

M = 1 .  10101100100010100000100

e = 10010100 = 148

E = 148 - 127 = 21

所以小数点移动右移动21位, V = 1101011001000101000001.00 = 3510593.00 


49

A 这个正整数是 2^(n+2) + 1

B 那就是2^25 + 1


50

   

  

  

   

数值

舍入

数值

A

10.010

2.25

10.0

2

B

10.011

2.375

10.1

2.5

C

10.110

2.75

11.0

3

D

10.001

2.125

10.0

2


51

x   = 0.00011001100110011001100

0.1 = 0.00011001100110011001100 110011[0011]

x'  = 0.00011001100110011001101

x' - 0.1 = 00011001100110011001101 / 2^23 - 0.1

         = 838861/8388608 - 0.1 

                = (838861 - 838860.8)/8388608 

                = 2 / 8388608 

                = 1 / 4194304

                = 2.384185791015625e-7


52

   

   

   

011 0000

1

0111 000

1

101 1110

7.5

1001 111

7.5

010 1001

0.78125

0110 100

0.75

110 1111

15.5

1011 000

16

000 0001

0.015625

0001 000

0.015625

   


53

#define HUGE_NUM (1.0e300)

#define POS_INFINITY (HUGE_NUM*HUGE_NUM)

#define NEG_INFINITY (-1*POS_INFINITY)

#define NEG_ZERO (0)


54

A true,因为doublen52位,所以任何32位整数都可以精确的表示。

B x = 0x7fffffff; 这个数字包含311,所以float没法精确标示。

C d= 1.11111111111111111111111111111  1的个数超过23位就可以了。

D true, 一样,double可以表示所有的float数字.

E true, 浮点数的正数和负数的表示范围一样,不会出现溢出.

F true

G true 浮点数没有负溢出,正数乘法的结果永远是正数。

H d = 18014398509481984; f = 2; 构造方法是找个大的数d, d+f无法精确表示,但是d-f能表示.

你可能感兴趣的:(APP)