Luogu P3338 [ZJOI2014]力

题目大意

给定 n n n 个数 q i q_i qi,定义 F j = ∑ i < j q i q j ( i − j ) 2 − ∑ i > j q i q j ( i − j ) 2 F_j=\sum_{i<j}\dfrac{q_iq_j}{(i-j)^2}-\sum_{i>j}\dfrac{q_iq_j}{(i-j)^2} Fj=i<j(ij)2qiqji>j(ij)2qiqj E i = F i q i E_i=\dfrac{F_i}{q_i} Ei=qiFi,求 E i E_i Ei

题解

首先需要牢记卷积的形式: c k = ∑ i = 1 k a i b k − i c_k=\sum\limits_{i=1}^ka_ib_{k-i} ck=i=1kaibki,即满足两个数组的下标和 sigma \text{sigma} sigma上标
F i F_i Fi 展开得
E j = ∑ i < j q i ( i − j ) 2 − ∑ i > j q i ( i − j ) 2 E_j=\sum_{i<j}\dfrac{q_i}{(i-j)^2}-\sum_{i>j}\dfrac{q_i}{(i-j)^2} Ej=i<j(ij)2qii>j(ij)2qi

更改枚举顺序
E j = ∑ i = 1 j − 1 q i ( i − j ) 2 − ∑ i = j + 1 n q i ( i − j ) 2 E_j=\sum_{i=1}^{j-1}\dfrac{q_i}{(i-j)^2}-\sum_{i=j+1}^{n}\dfrac{q_i}{(i-j)^2} Ej=i=1j1(ij)2qii=j+1n(ij)2qi

f i = q i f_i=q_i fi=qi g i = 1 i 2 g_i=\dfrac{1}{i^2} gi=i21,特别地, g 0 = 0 g_0=0 g0=0,则有:
E j = ∑ i = 1 j − 1 f i g i − j − ∑ i = j + 1 n f i g i − j E_j=\sum_{i=1}^{j-1}f_ig_{i-j}-\sum_{i=j+1}^{n}f_ig_{i-j} Ej=i=1j1figiji=j+1nfigij

g i − j = g j − i g_{i-j}=g_{j-i} gij=gji ,则有:
A j = ∑ i = 1 j − 1 f i g i − j = ∑ i = 1 j − 1 f i g j − i = ∑ i = 1 j f i g j − i A_j=\sum_{i=1}^{j-1}f_ig_{i-j}=\sum_{i=1}^{j-1}f_ig_{j- i}=\sum_{i=1}^{j}f_ig_{j-i} Aj=i=1j1figij=i=1j1figji=i=1jfigji

就是一个标准的卷积。然后考虑 B j = ∑ i = j + 1 n f i g i − j = ∑ i = 1 n − j f i + j g i B_j=\sum\limits_{i=j+1}^{n}f_ig_{i-j}=\sum\limits_{i=1}^{n-j}f_{i+j}g_{i} Bj=i=j+1nfigij=i=1njfi+jgi

p i = f n − i p_i=f_{n-i} pi=fni,则 p n − i − j = f i + j p_{n-i-j}=f_{i+j} pnij=fi+j,则有:
B j = ∑ i = 1 n − j f i + j g i = ∑ i = 1 n − j p n − i − j g i = B n − j ′ B_j=\sum\limits_{i=1}^{n-j}f_{i+j}g_{i}=\sum_{i=1}^{n-j} p_{n-i-j}g_i=B'_{n-j} Bj=i=1njfi+jgi=i=1njpnijgi=Bnj

则可以用FFT求出 B ′ B' B,然后根据 B i = B n − i ′ B_i=B'_{n-i} Bi=Bni 计算。

代码

注意精度问题(别问我怎么知道的):

  1. 不要写 1.0 / ( i ∗ i ) 1.0/(i*i) 1.0/(ii),写 1.0 / i / i 1.0/i/i 1.0/i/i
  2. 不要ans[i]/=limit,直接输出就好。
#include
using namespace std;
const int maxn=862154;
const double pi=acos((double)-1.0);
struct comp{
    double x,y;
    comp(double xx=0,double yy=0):x(xx),y(yy) {}
    friend comp operator+(const comp &x,const comp &y) {return comp(x.x+y.x,x.y+y.y);}
    friend comp operator-(const comp &x,const comp &y) {return comp(x.x-y.x,x.y-y.y);}
    friend comp operator*(const comp &a,const comp &b) {return comp(a.x*b.x-a.y*b.y,a.x*b.y+b.x*a.y);}
}f[maxn],g[maxn],p[maxn],A[maxn],B[maxn];
int limit=1,n,l=0,r[maxn];
void fft(comp *t,int ty){
    for(int i=0;i<limit;i++)
        if(i<r[i])
            swap(t[i],t[r[i]]);
    for(int mid=1;mid<limit;mid<<=1){
        comp wn(cos(pi/mid),ty*sin(pi/mid));
        for(int j=0,R=(mid<<1);j<limit;j+=R){
            comp w(1,0);
            for(int k=0;k<mid;k++,w=w*wn){
                comp x=t[j+k],y=w*t[j+k+mid];
                t[j+k]=x+y;
                t[j+k+mid]=x-y;
            }
        }
    }
}
void reset(int n,int m){
    while(limit<=n+m+2)
        limit<<=1,++l;
    for(int i=1;i<limit;i++)
        r[i]=((r[i>>1]>>1)|((i&1)<<(l-1)));
}
int main(void)
{
    memset(f,0,sizeof f);
    memset(g,0,sizeof g);
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%lf",&f[i].x);
        g[i].x=(double)1.0/i/i;
        p[n-i].x=f[i].x;
    }
    reset(n,n);
    fft(f,1);fft(g,1);fft(p,1);
    for(int i=0;i<limit;i++)
        A[i]=g[i]*f[i];
    fft(A,-1);
    for(int i=0;i<limit;i++)
        B[i]=g[i]*p[i];
    fft(B,-1);
    for(int i=1;i<=n;i++)
        printf("%.6lf\n",A[i].x/limit-B[n-i].x/limit);
    return 0;
}

你可能感兴趣的:(FFT)