语义分割该如何走下去?


提问:

请有经验的大佬指点下方向。本人研究方向是语义分割(研一),但目前学习有些迷茫,目前感觉在自己只知道一些fcn,unet,deeplab等模型,看的论文也大多是语义分割模型构建之类的,然后在自己做模型也就是(空洞卷积,编码解码结构,restnet,fuse,concat一顿组装)结果还惨不忍睹,感觉自己自从看完必要的网络结构模型外,已经很久没有提升了。不知道自己应该如何提升,看的论文除了构建模型结构,还要看哪些?或者学习哪些知识?

请有经验的大佬指点一下,或者推荐一些论文,或者推荐一些课程?

作者:湃森,机器学习,深度学习,计算机视觉爱好者。

回答:

说句泼冷水的话,对大多数研究从业人员来说语义分割目前已经达到瓶颈期了。

顶会顶刊paper看来看去真没啥突破:

(1)手动设计网络结构 -> NAS搜索;

(2)固定感受野 -> 引入空间注意力做感受野自动调节;

(3)效果提升不上去 -> 换个思路做实时分割来对比结果;

(4)自监督太热门 -> 引入弱监督 (GAN, 知识蒸馏, ...) + trick = 差不多的score;

(5)DNN太枯燥,融入点传统视觉的方法搞成end-to-end训练;

(6)CNN太单调,配合GCN搞点悬念;

(7)嫌2D太low逼,转3D点云分割;

觉得太懒?积木堆起:A+B,A+B+C,A+B+C+D,...

积木总结:

A-注意力机制:SE ~ Non-local ~ CcNet ~ GC-Net ~ Gate ~ CBAM ~ Dual Attention ~ Spatial Attention ~ Channel Attention ~ ... 【只要你能熟练的掌握加法、乘法、并行、串行四大法则,外加知道一点基本矩阵运算规则(如:HW * WH = HH)和sigmoid/softmax操作,那么你就能随意的生成很多种注意力机制】

B-卷积结构:Residual block ~ Bottle-neck block ~ Split-Attention block ~ Depthwise separable convolution ~ Recurrent convolution ~ Group convolution ~ Dilated convolution ~ Octave convolution ~ Ghost convolution ~ ...【直接替换掉原始卷积块就完事了】

C-多尺度模块:ASPP ~ PPM ~ DCM ~ DenseASPP ~ FPA ~ OCNet ~ MPM... 【好好把ASPP和PPM这两个模块理解一下,搞多/减少几条分支,并联改成串联或者串并联结合,每个分支搞点加权,再结合点注意力或者替换卷积又可以组装上百种新结构出来了】

D-损失函数:Focal loss ~ Dice loss ~ BCE loss ~ Wetight loss ~ Boundary loss ~ Lovász-Softmax loss ~ TopK loss ~ Hausdorff distance(HD) loss ~ Sensitivity-Specificity (SS) loss ~ Distance penalized CE loss ~ Colour-aware Loss...

E-池化结构:Max pooling ~ Average pooling ~ Random pooling ~ Strip Pooling ~ Mixed Pooling ~...

F-归一化模块:Batch Normalization ~Layer Normalization ~ Instance Normalization ~ Group Normalization ~ Switchable Normalization ~ Filter Response Normalization...

G-学习衰减策略:StepLR ~ MultiStepLR ~ ExponentialLR ~ CosineAnnealingLR ~

ReduceLROnPlateau ~...

H-优化算法:BGD ~ SGD ~ Adam ~ RMSProp ~ Lookahead ~...

I-数据增强:水平翻转、垂直翻转、旋转、平移、缩放、裁剪、擦除、反射变换 ~ 亮度、对比度、饱和度、色彩抖动、对比度变换 ~ 锐化、直方图均衡、Gamma增强、PCA白化、高斯噪声、GAN ~ Mixup

J-骨干网络:LeNet ~ ResNet ~ DenseNet ~ VGGNet ~ GoogLeNet ~ Res2Net ~ ResNeXt ~ InceptionNet ~ SqueezeNet ~ ShuffleNet ~ SENet ~ DPNet ~ MobileNet ~NasNet ~ DetNet ~ EfficientNet ~ ...

...

语义分割从入门到放弃...


文章经过作者同意转载

 

文章推荐

Keras vs PyTorch,哪一个更适合做深度学习?

2020 年,投身计算机视觉是否明智?

为什么现在不看好CV方向了?


你可能感兴趣的:(语义分割该如何走下去?)