SparkCore-RDD 练习

1.原始数据如下:

* 格式 :timestamp province city userid adid
* 某个时间点 某个省份 某个城市 某个用户 某个广告
  1516609143867 6 7 64 16
  1516609143869 9 4 75 18
  1516609143869 1 7 87 12
  1516609143869 2 8 92 9
* 注意:
  • 用户ID范围: 0 - 99
  • 省份、城市 ID相同 : 0 - 9
  • adid: 0 - 19

 

2.需求:统计每一个省份点击TOP3的广告ID    省份+广告

2.1 分析:

val logsRDD = sc.textFile("./log")             RDD[String]

val logsArrayRDD = logsRDD.map(_.split(" "))   RDD[Array[String]]

val proAndAd2Count = logsArrayRDD.map(x => (x(1)+"_"+x(4),1) )

val proAndAd2Sum = proAndAd2Count.reduceByKey(_+_)  //每一个省份每一个广告的总点击量

val pro2AdCount = proAndAd2Sum.map(x => val param = x._1.split("_"); (param(0),(x._2,param(1))))
                                                       [省份 + 广告id, 点击数]

                                                       [省份, (广告ID,点击数)]
val pro2AdArray = pro2AdCount.groupByKey() [省份,Array( (广告ID,次数),(广告ID,次数) )]

pro2AdArray.mapValues( x => x.toList.sortBy(false).take(3) )

2.2 实现:

package com.luomk.sql
import org.apache.spark.{SparkConf, SparkContext}

object Praction1 {
  def main(args: Array[String]): Unit = {
    //创建sparkConf对象
    val conf = new SparkConf().setAppName("practice").setMaster("local[*]")
    //创建sparkcontext对象
    val sc = new SparkContext(conf)
    //需求:统计每一个省份点击TOP3的广告ID
    //读取数据 RDD[String]
    val logs = sc.textFile("./agent.log")
    //将RDD中的String转换为数组 RDD[Array[String]]
    val logsArray = logs.map(x => x.split(" "))
    //提取相应的数据,转换粒度 RDD[( pro_adid, 1 )]
     val proAndAd2Count = logsArray.map(x => (x(1) + "_" + x(4), 1))
     //将每一个省份每一个广告的所有点击量聚合 RDD[( pro_adid, sum )]
     val proAndAd2Sum = proAndAd2Count.reduceByKey((x, y) => x + y)
     //将粒度扩大, 拆分key, RDD[ ( pro, (sum, adid) ) ]
     val pro2AdSum = proAndAd2Sum.map { x => val param = x._1.split("_"); (param(0), (param(1), x._2)) }
     //将每一个省份所有的广告合并成一个数组 RDD[ (pro, Array[ (adid, sum) ]) ]
     val pro2AdArray = pro2AdSum.groupByKey()
     //排序取前3                                     sortWith(lt: (A, A) => Boolean)
     val result = pro2AdArray.mapValues(values => values.toList.sortWith((x, y) => x._2 > y._2).take(3))
     //行动操作
    result.collectAsMap()
    //关闭SparkContext
    sc.stop()
  }
}

3.需求:统计每一个省份每一个小时的TOP3广告的ID

3.1 分析:

map(key : map( k: Array(Int)))
  ( pro_hour_ad, 1 )
reduceByKey
  ( pro_hour_ad, sum )
  ( pro_hour, (sum, ad))
  groupByKey
  ( pro_hour,  Array( (sum,ad) ) )
  ( pro_hour,  Array( (sum,ad) ) )
  ( pro, (hour,  Array()) )
  groupByKey
  ( pro, Array( (hour, Array()) )

3.2 实现:

package com.luomk.sql
import org.apache.spark.{SparkConf, SparkContext}
import org.joda.time.DateTime

object Practice2 {
  def getHour(timelong: String): String = {
    val datetime = new DateTime(timelong.toLong)
    datetime.getHourOfDay.toString
  }

  def main(args: Array[String]): Unit = {
    //创建sparkConf对象
    val conf = new SparkConf().setAppName("practice").setMaster("local[*]")
    //创建sparkcontext对象
    val sc = new SparkContext(conf)
    //需求:统计每一个省份点击TOP3的广告ID
    //读取数据 RDD[String]
    val logs = sc.textFile("./agent.log")
    //将RDD中的String转换为数组 RDD[Array[String]]
    val logsArray = logs.map(x => x.split(" "))
    //产生最小粒度  RDD[ ( pro_hour_ad , 1 ) ]
    val pro_hour_ad2Count = logsArray.map { x =>
      (x(1) + "_" + getHour(x(0)) + "_" + x(4), 1)
    }
    //计算每一个省份每一个小时每一个广告的点击总量  RDD[ ( pro_hour_ad , sum ) ]
    val pro_hour_ad2Sum = pro_hour_ad2Count.reduceByKey(_ + _)
    //拆分key,扩大粒度  RDD[ ( pro_hour , (ad, sum) ) ]
    val pro_hour2AdArray = pro_hour_ad2Sum.map{x =>
      val param = x._1.split("_")
      (param(0) + "_" + param(1), (param(2), x._2))
    }
    //将一个省份一个小时内的数据聚合 RDD[ ( pro_hour , Array[ (ad, sum) ] ) ]
    val pro_hour2AdGroup = pro_hour2AdArray.groupByKey()
    //直接对一个小时内的广告排序,取前三
    val pro_hour2Top3AdArray = pro_hour2AdGroup.mapValues{ x =>
      x.toList.sortWith( (x,y) => x._2 > y._2  ).take(3)
    }
    //扩大粒度, RDD[ ( pro , (hour, Array[(ad, sum)])  ) ]
    val pro2hourAdArray = pro_hour2Top3AdArray.map{x =>
      val param = x._1.split("_")
      (param(0), (param(1), x._2))
    }
    val result2 = pro2hourAdArray.groupByKey()
    result2.collectAsMap()
    //关闭SparkContext
    sc.stop()
  }
}

你可能感兴趣的:(#,Spark)