传送门
思路
显然是树形DP,显然是斜率优化,唯一的问题就是该怎么维护凸包。
套路1:树上斜率优化,在没有这题的路程的限制的情况下,可以维护一个单调栈,每次加入点的时候二分它会加到哪里,然后替换并记录,等从这个点回溯上来的时候再撤销。
套路2:有路程限制时,不能简单替换,因为你可能会替换掉一个下面有用的点,然后WA掉。解决方法是用树状数组维护后缀单调栈,同样要支持撤销。
听着很简单,但代码不是很好写。
代码
第82行少打一个\(dep\)调了一下午,身败名裂……
#include
clock_t t=clock();
namespace my_std{
using namespace std;
#define pii pair
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define templ template
#define sz 202200
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return xy?x=y,1:0;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
templateinline void read(T& t,Args&... args){read(t); read(args...);}
char __sr[1<<21],__z[20];int __C=-1,__zz=0;
inline void Ot(){fwrite(__sr,1,__C+1,stdout),__C=-1;}
inline void print(register ll x)
{
if(__C>1<<20)Ot();if(x<0)__sr[++__C]='-',x=-x;
while(__z[++__zz]=x%10+48,x/=10);
while(__sr[++__C]=__z[__zz],--__zz);__sr[++__C]='\n';
}
void file()
{
#ifdef NTFOrz
freopen("a.in","r",stdin);
#endif
}
inline void chktime()
{
#ifndef ONLINE_JUDGE
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std;
int n;
#define N (n+10)
struct hh{int t;ll w;int nxt;}edge[sz<<1];
int head[sz],ecnt;
void make_edge(int f,int t,ll w){edge[++ecnt]=(hh){t,w,head[f]};head[f]=ecnt;}
ll dep[sz],dp[sz],P[sz],Q[sz],L[sz];
int a[sz],c;
#define Convex vector
Convex tr[sz];int siz[sz];
ll Calc(int id,ll k)
{
if (!siz[id]) return 1e18;
int l=0,r=siz[id]-1;
while (233)
{
if (r-l<=10)
{
ll ret=1e18;
rep(i,l,r) chkmin(ret,dp[tr[id][i]]-k*dep[tr[id][i]]);
return ret;
}
int mid=(l+r)>>1;
if (dp[tr[id][mid]]-k*dep[tr[id][mid]]M;
db K(int x,int y){return 1.0*(dp[y]-dp[x])/(dep[y]-dep[x]);}
void Insert(int id,int x)
{
int l=1,r=siz[id]-1,pos=(int)tr[id].size();
while (l<=r)
{
int p=(l+r)>>1;
if (dep[tr[id][p-1]]==dep[x])
{
if (dp[tr[id][p-1]]<=dp[x]) return;
else pos=p-1,r=p-2;
continue;
}
if (K(tr[id][p-1],x)>1;
if (dep[v]-dep[a[mid]]<=L[v]) pos=mid,r=mid-1;
else l=mid+1;
}
dp[v]=calc(N-pos,P[v])+P[v]*dep[v]+Q[v];
dfs(v,x);
}
reset(x,N-c);--c;
}
int main()
{
file();
int _;
read(n,_);
int x;ll y;
rep(i,2,n) read(x,y,P[i],Q[i],L[i]),make_edge(x,i,y);
dfs(1,0);
rep(i,2,n) print(dp[i]);Ot();
return 0;
}