close all;


%%

%Step 1: 彩***像->灰度图像

rgb = imread('pears.png');

I = rgb2gray(rgb);

figure;subplot(121)

imshow(I)

%Step 2: 利用梯度实现图像的分割

%使用sobel算子进行边缘检测,

text(732,501,'Image courtesy of Corel','FontSize',7,'HorizontalAlignment','right')

hy = fspecial('sobel');

hx = hy';

Iy = imfilter(double(I), hy, 'replicate');%实现线性空间滤波函数,一种采用滤波处理的影像增强方法。其理论基础是空间卷积和空间相关。目的是改善影像质量,包括去除高频噪声与干扰,及影像边缘增强、线性增强以及去模糊等。

Ix = imfilter(double(I), hx, 'replicate');

gradmag = sqrt(Ix.^2 + Iy.^2);%求模

subplot(122), imshow(gradmag,[]), title('gradmag')

%直接用分水岭

%L=watershed(gradmag);

%Lrgb=label2rgb(L);

%figure;imshow(Lrgb),

%title('Lrgb')

%No. 如果没有额外的预处理,如下面的标记计算,使用分水岭变换直接结果往往是“过度分割。” 

% 以下是标记前景和背景物体

%各种程序可以在这里应用到找到前景标记,它必须连接内的每个前景对象的像素的斑点。在这个例子中,你将使用名为“开放由重建”及以上的图像“闭合由重建”为“干净”的形态学技术。这些操作将创建一个可以使用imregionalmax位于每个对象内部平最大值。

%Step 3:形态学开操作

se = strel('disk', 20);%圆形结构元素

Io = imopen(I, se);%形态学开操作

figure;subplot(121)

imshow(Io), title('Io')%显示执行后的图

%Step 4:腐蚀与重建

Ie = imerode(I, se);%对图像进行腐蚀

Iobr = imreconstruct(Ie, I);%对图像进行重建

subplot(122);imshow(Iobr), %显示重建后的图像

title('Iobr')

%Step 5:形态学关操作

Ioc = imclose(Io, se);%形态学关操作

figure;subplot(121)

imshow(Ioc), 

title('Ioc')

%Step 6:图像膨胀与求反

Iobrd = imdilate(Iobr, se);%对图像进行膨胀

Iobrcbr = imreconstruct(imcomplement(Iobrd), imcomplement(Iobr));

Iobrcbr = imcomplement(Iobrcbr);%对图像求反

subplot(122);imshow(Iobrcbr), 

title('Iobrcbr')

%%Step 7:获得局部最大值

fgm = imregionalmax(Iobrcbr);%获得局部最大值

figure;imshow(fgm), 

title('fgm')

%Step 8:在原图上显示极大值区域

I2 = I;

I2(fgm) = 255;%局部极大值处像素值设为255

figure;imshow(I2), 

title('fgm superimposed on original p_w_picpath')%在原图上显示极大值区域

se2 = strel(ones(5,5));%构建元素

fgm2 = imclose(fgm, se2);%关操作

fgm3 = imerode(fgm2, se2);%腐蚀

fgm4 = bwareaopen(fgm3, 20);%开操作

%Step 9:显示修改后的极大区域

I3 = I;

I3(fgm4) = 255;%前景设置为255

figure;subplot(121),

imshow(I3)%显示修改后的极大区域

title('fgm4 superimposed on original p_w_picpath')

%现在标记背景, 在清理后的图像,Iobrcbr,暗像素属于背景,所以你可以从一个阈值操作。

%Step 10:转化为二值图像

bw = im2bw(Iobrcbr, graythresh(Iobrcbr));

subplot(122);imshow(bw),

title('bw')

%背景像素是黑色的,但理想地,我们不希望的背景标记是太靠近我们目标对象的边缘。我们通过'骨骼化'进行细分,对二值图像的距离进行分水岭变换,然后寻找分水岭的界线。

%Step 11:

D = bwdist(bw);%计算距离

DL = watershed(D);%分水岭变换

bgm = DL == 0;%求取分割边界

figure; imshow(bgm), %显示分割后的边界

title('Watershed ridge lines (bgm)')

gradmag2 = imimposemin(gradmag, bgm | fgm4);%置最小值

L = watershed(gradmag2);%分水岭变换

I4 = I;

I4(imdilate(L == 0, ones(3, 3)) | bgm | fgm4) = 255;%前景及边界处置255

figure; subplot(121)

imshow(I4)%突出前景及边界

title('Markers and object boundaries')

Lrgb = label2rgb(L, 'jet', 'w', 'shuffle');%转化为伪彩***像

subplot(122); imshow(Lrgb)%显示伪彩***像

title('Colored watershed label matrix')

figure; imshow(I), 

hold on

hp_w_picpath = imshow(Lrgb);%在原图上显示伪彩***像

set(hp_w_picpath, 'AlphaData', 0.3);

title('Lrgb superimposed transparently on original p_w_picpath')