Fleury算法求欧拉回路(二)

  上一篇文章当中介绍了Fleury算法是什么以及算法流程,本篇文章将介绍如何用代码来实现求解欧拉回路。废话不多说先来三个例子,这三个例子分别是两个欧拉图和一个非欧拉图。

  非欧拉图:

图 1  


Fleury算法求欧拉回路(二)_第1张图片


  欧拉图一:

图 2 (此图来自《离散数学教程》p135)

Fleury算法求欧拉回路(二)_第2张图片


  欧拉图二:(这是一个七个点的图,每一个点都是6条边)

图 3

Fleury算法求欧拉回路(二)_第3张图片


  现在我们来开始编码,首先,创建一个二维数组来存储图,然后是输入点的个数和边的个数,以及哪两个点有边。以下是代码片段:

 

#include

int eulerGraph[1000][1000] = {{0}};//用来存储图,全局的二维数组

int V,E;//边以及点的个数
  

printf("please input the number of V (no more than 1000): \n");
scanf("%d",&V);
printf("please input the number of E : \n");
scanf("%d",&E);
printf("please input E : \n");
int i,j;
//Init eulerGraph
	
for(i = 0; i < V; i++) {
	for(j = 0; j < V; j++) {
		eulerGraph[i][j] = 0;
	}
}
int m,n;
//create graph
for (i = 0; i < E; i++) {
	scanf("%d %d",&m,&n);
	if ((m >= V) || (n >= V)) {
		printf("cannot more than V\n");
		return 1;
	}
	eulerGraph[m][n] = eulerGraph[n][m] = 1;
}

打印你的点,看看是否输入正确:

	for(i = 0; i < V; i++) {
		for(j = 0; j < V; j++) {
			printf("%d ",eulerGraph[i][j]);
		}
		printf("\n");
	}
然后,判断是否为欧拉图:
if (!isEulerGraph()) {
		
		printf("the graph is not euler graph!\n");
		return 1;
	}
isEulerGraph()函数:

int  isEulerGraph() {
	int i,j;
	int count = 0;
	for (i = 0; i < V; i++) {
		for (j = 0; j < V; j++) {
			if (1 == eulerGraph[i][j]) 
				count++;
		}
		if (0 != count % 2 )
			return 0;
		count = 0;
	}
	return 1;
}

接下来就是Fleury算法:

fleury();
void fleury () {
	//set a start ,v0
	int temp[1000] ={0};
	printf("%d -> ",temp[0]);
	int i = 0;
	int j = 0;
	int top = 0;
	int bridge = 1;
	int tmp;
	for (i = 0; i < E; i++) {//Traversal all E
		for (j = 0; j < V; j++) {
			if(1 == eulerGraph[temp[top]][j]) {
				eulerGraph[temp[top]][j] = eulerGraph[j][temp[top]] = 0;
				//if the E is bridge,take a signal in this E,else delete this E
				if(isBridge(temp[top],j)) {
					tmp = j;		
					eulerGraph[temp[top]][j] = eulerGraph[j][temp[top]] = 1;
				}
				else {
					top++;
					temp[top] = j;
					bridge = 0;
					printf("%d -> ",j);
					break;
				}
					
			}
		}
		//if bridge == 1, no another E in this V that the E is not bridge
		if (bridge) {
			eulerGraph[temp[top]][tmp] = eulerGraph[tmp][temp[top]] = 0;
			top++;
			temp[top] = tmp;
			printf("%d -> ",tmp);
		}
		bridge = 1;
	}
//	for (i = 0; i < (E - 1); i++) {
//		printf("%d -> ",temp[i]);
//	}
//	printf ("%d",temp[E-1]);
}

调用的isBridge函数:

首先,建立一个数组用来存储要判断的Vi能够到达的点,只要数组里面的点未遍历完那么就把这些点能够到达的点,并且在数组中还未遍历过加进来。以下是源代码:

int isBridge (int m, int k) {
	int temp[1000] = {-1};
	int i = 0;
	for (i = 0; i < 1000; i++) {
		temp[i] = -1;
	}
	int tmp = 0;
	temp[tmp] = m;
	int n = 0;
	//判断从m->k是否还有其他路径
	for (tmp = 0; temp[tmp] != -1; tmp++ ) {		
		for (i = 0; i < V; i++) {
			
			if (eulerGraph[temp[tmp]][i] == 1 && i == k) {
				return 0;//because is exist another way to k,so m->k is not bridge  
			}
			if (eulerGraph[temp[tmp]][i] == 1 && isExist(temp,i) == 0) {//将当前的点有边的点,前面没有到过的点加入到数组当中
				n++;
				temp[n] = i;//take new V into temp array
			}
		}
	}
	//not found k,so m->k is bridge
	return 1;
}

下面是判断之前是否已经遍历过这个点了,数组中是否存在

int isExist (int *temp,int m) {
	int i = 0;
	while (temp[i] != -1) {
		if (temp[i] == m)
			return 1;
		i++;
	}
	return 0;
}
以下是测试结果和全部的源代码:

测试非欧拉图:


Fleury算法求欧拉回路(二)_第4张图片



测试欧拉图一:

Fleury算法求欧拉回路(二)_第5张图片
 

测试欧拉图二:(本人有点懒,所以就不打算使用手动输入的方式喽,采用输入重定向的方式来进行输入,大家平时测试的时候也可以这样做,毕竟比较方便一点)

输入:

7
21
0 1
0 2
0 3
0 4
0 5
0 6
1 2
1 3
1 4
1 5
1 6
2 3
2 4
2 5
2 6
3 4
3 5
3 6
4 5
4 6
5 6

输出:

Fleury算法求欧拉回路(二)_第6张图片


以上就是我对于Fleury算法的理解,如果觉得还可以,请点个赞或者在下方评论,以下是我的源代码:

/*************************************************************************
    > File Name: Fleury.c
    > Author: pengjinghui
    > Mail: [email protected] 
    > Created Time: 2015年09月24日 星期四 21时56分27秒
 ************************************************************************/

#include

int eulerGraph[1000][1000] = {{0}};//用来存储图,全局的二维数组

int V,E;//边以及点的个数

int  isEulerGraph() {
	int i,j;
	int count = 0;
	for (i = 0; i < V; i++) {
		for (j = 0; j < V; j++) {
			if (1 == eulerGraph[i][j]) 
				count++;
		}
		if (0 != count % 2 )
			return 0;
		count = 0;
	}
	return 1;
}
int isExist (int *temp,int m) {
	int i = 0;
	while (temp[i] != -1) {
		if (temp[i] == m)
			return 1;
		i++;
	}
	return 0;
}
int isBridge (int m, int k) {
	int temp[1000] = {-1};
	int i = 0;
	for (i = 0; i < 1000; i++) {
		temp[i] = -1;
	}
	int tmp = 0;
	temp[tmp] = m;
	int n = 0;
	//判断从m->k是否还有其他路径
	for (tmp = 0; temp[tmp] != -1; tmp++ ) {		
		for (i = 0; i < V; i++) {
			
			if (eulerGraph[temp[tmp]][i] == 1 && i == k) {
				return 0;//because is exist another way to k,so m->k is not bridge  
			}
			if (eulerGraph[temp[tmp]][i] == 1 && isExist(temp,i) == 0) {//将当前的点有边的点,前面没有到过的点加入到数组当中
				n++;
				temp[n] = i;//take new V into temp array
			}
		}
	}
	//not found k,so m->k is bridge
	return 1;
}
void fleury () {
	//set a start ,v0
	int temp[1000] ={0};
	printf("%d -> ",temp[0]);
	int i = 0;
	int j = 0;
	int top = 0;
	int bridge = 1;
	int tmp;
	for (i = 0; i < E; i++) {//Traversal all E
		for (j = 0; j < V; j++) {
			if(1 == eulerGraph[temp[top]][j]) {
				eulerGraph[temp[top]][j] = eulerGraph[j][temp[top]] = 0;
				//if the E is bridge,take a signal in this E,else delete this E
				if(isBridge(temp[top],j)) {
					tmp = j;		
					eulerGraph[temp[top]][j] = eulerGraph[j][temp[top]] = 1;
				}
				else {
					top++;
					temp[top] = j;
					bridge = 0;
					printf("%d -> ",j);
					break;
				}
					
			}
		}
		//if bridge == 1, no another E in this V that the E is not bridge
		if (bridge) {
			eulerGraph[temp[top]][tmp] = eulerGraph[tmp][temp[top]] = 0;
			top++;
			temp[top] = tmp;
			printf("%d -> ",tmp);
		}
		bridge = 1;
	}
//	for (i = 0; i < (E - 1); i++) {
//		printf("%d -> ",temp[i]);
//	}
//	printf ("%d",temp[E-1]);
}

int main () {
	printf("please input the number of V (no more than 1000): \n");
	scanf("%d",&V);
	printf("please input the number of E : \n");
	scanf("%d",&E);
	printf("please input E : \n");
	int i,j;
	//Init eulerGraph
	
	for(i = 0; i < V; i++) {
		for(j = 0; j < V; j++) {
			eulerGraph[i][j] = 0;
		}
	}
	int m,n;
	//create graph
	for (i = 0; i < E; i++) {
		scanf("%d %d",&m,&n);
		if ((m >= V) || (n >= V)) {
			printf("cannot more than V\n");
			return 1;
		}
		eulerGraph[m][n] = eulerGraph[n][m] = 1;
	}
	
	for(i = 0; i < V; i++) {
		for(j = 0; j < V; j++) {
			printf("%d ",eulerGraph[i][j]);
		}
		printf("\n");
	}
	if (!isEulerGraph()) {
		
		printf("the graph is not euler graph!\n");
		return 1;
	}
	fleury();
}


















































你可能感兴趣的:(Fleury算法求欧拉回路(二))