- 【Python百日进阶-Web开发-Peewee】Day295 - 查询示例(四)聚合1
岳涛@心馨电脑
Dashpython前端dash
文章目录14.6聚合14.6.1计算设施数量Countthenumberoffacilities14.6.2计算昂贵设施的数量Countthenumberofexpensivefacilities14.6.3计算每个成员提出的建议数量。Countthenumberofrecommendationseachmembermakes.14.6.4列出每个设施预订的总空位Listthetotalslots
- 基于图的推荐算法(12):Handling Information Loss of Graph Neural Networks for Session-based Recommendation
阿瑟_TJRS
前言KDD2020,针对基于会话推荐任务提出的GNN方法对已有的GNN方法的缺陷进行分析并做出改进主要针对lossysessionencoding和ineffectivelong-rangedependencycapturing两个问题:基于GNN的方法存在损失部分序列信息的问题,主要是在session转换为图以及消息传播过程中的排列无关(permutation-invariant)的聚合过程中造
- ITU-T V-Series Recommendations
技术无疆
Othercompressionstandardsprotocolsinterfacenetworkalgorithm
TheITU-TV-SeriesRecommendationsonDatacommunicationoverthetelephonenetworkspecifytheprotocolsthatgovernapprovedmodemcommunicationstandardsandinterfaces.[1]Note:thebisandtersuffixesareITU-Tstandarddesig
- Make It a Chorus: Knowledge- and Time-aware Item Modeling for Sequential Recommendation sigir 20
农场主
机器学习
介绍的博客作者讲解摘要传统的推荐系统主要针对固有的、长期的用户偏好进行建模,而动态的用户需求也是非常重要的。通常,历史消费会影响用户对其关系项的需求。例如,用户倾向于一起购买互补产品(iPhone和AirPods),而不是替代产品(Powerbeats和AirPods),尽管替代购买的产品仍然迎合了他/她的偏好。为了更好地模拟历史序列的影响,以前的研究引入了项目关系的语义来捕捉用户的推荐需求。然而
- 多模态推荐系统综述
凤凰AI
推荐系统论文阅读人工智能数据挖掘机器学习
推荐系统(RS)已经成为在线服务不可或缺的工具。它们集成了各种深度学习技术,可以根据标识符和属性信息对用户偏好进行建模。随着短视频、新闻等多媒体服务的出现,在推荐的同时了解这些内容变得至关重要。此外,多模态特征也有助于缓解RS中的数据稀疏问题。因此,多模态推荐系统(multimodalrecommendationsSystem,MRS)近年来受到了学术界和业界的广泛关注。在本文中,我们将主要从技术
- DS Wannabe之5-AM Project: DS 30day int prep day10
wendyponcho
python机器学习
Q1.WhatisaRecommenderSystem?Arecommendersystemistodaywidelydeployedinmultiplefieldslikemovierecommendations,musicpreferences,socialtags,researcharticles,searchqueriesandsoon.Therecommendersystemsworka
- PSR
CaptainRoy
PSR(PHPStandardsRecommendation)是PHP框架之间标准的代码风格PSR-1:基本的代码风格PSR-2:严格的代码风格PSR-3:日志记录器接口PSR-4:自动加载PSR-1必须把PHP代码放在标签中类和方法名必须使用驼峰法常量名称必须全是大写字母,可以使用下划线把单词隔开PSR-2必须贯彻PSR-1代码风格使用四个空格缩进文件必须使用unix风格的换行符,最后要有一个空
- 因果推断推荐系统工具箱 - CFF(二)
processor4d
文章名称【CIKM-2021】【BeijingKeyLaboratoryofBigDataManagementandAnalysisMethods-AntGroup】CounterfactualReview-basedRecommendation核心要点文章旨在解决现有基于评论的推荐系统中存在的评论稀疏和不平衡的问题,提出在feature-aware的推荐场景下,利用反事实样本提升模型性能。作者通
- 论文笔记:相似感知的多模态假新闻检测
图学习的小张
论文笔记论文阅读python
整理了RecSys2020ProgressiveLayeredExtraction:ANovelMulti-TaskLearningModelforPersonalizedRecommendations)论文的阅读笔记背景模型实验论文地址:SAFE背景 在此之前,对利用新闻文章中文本信息和视觉信息之间的关系(相似性)的关注较少。这种相似性有助于识别虚假新闻,例如,虚假新闻也许会试图使用不相关的图
- Happier Hour —— A book recommendation
诚威_lol_中大努力中
storyandfeelinglife
2hourisenough,lesswillbecruel/stressful,morewillfeelemptinessSpendtimedoingsportsFeeltheawesomenessoflifeornature.....Thisbookisaboutthefeelingsoftime.Whenthingshaverelationswiththepsychology,theycanb
- 矢 杂货店_为instacart创建杂货产品推荐器
weixin_26729763
pythonjava
矢杂货店Intheecommerceshoppingexperienceproductrecommendationscomeinmanyforms:theymaybeusedtorecommendotherproductsononeproduct’spage(Amazon’s“Frequentlyboughttogether”featureforinstance)ortheymaybeusedon
- 【人工智能】神奇的Embedding:文本变向量,大语言模型智慧密码解析(10)
魔道不误砍柴功
AI大模型人工智能embedding语言模型
什么是嵌入?OpenAI的文本嵌入衡量文本字符串的相关性。嵌入通常用于:Search搜索(结果按与查询字符串的相关性排序)Clustering聚类(文本字符串按相似性分组)Recommendations推荐(推荐具有相关文本字符串的条目)Anomalydetection异常检测(识别出相关性很小的异常值)Diversitymeasurement多样性测量(分析相似性分布)Classificatio
- MySql修改字段类型和大小
on the way 123
mysql
MySql修改表字段的类型和大小原因:1,在我们设计表的时候,有时设计表字段女的大小和类型的时候,有时可能不合适,需要修改字段的大小2,修改表字段的常见2种,第一种修改大小,第二种修改数据类型sql语句第一种修改字段的大小原因是:第三方推送数据,这边接收数据,测试下那边recommendation这个字段是50个左右,之前设置是varchar(100)显然不够,根据Mysql的版本不同,汉字占字节
- 因果推断推荐系统工具箱 - CFF(一)
processor4d
文章名称【CIKM-2021】【BeijingKeyLaboratoryofBigDataManagementandAnalysisMethods-AntGroup】CounterfactualReview-basedRecommendation核心要点文章旨在解决现有基于评论的推荐系统中存在的评论稀疏和不平衡的问题,提出在feature-aware的推荐场景下,利用反事实样本提升模型性能。作者通
- 论文笔记:多任务学习模型:渐进式分层提取(PLE)含pytorch实现
图学习的小张
论文笔记论文阅读学习
整理了RecSys2020ProgressiveLayeredExtraction:ANovelMulti-TaskLearningModelforPersonalizedRecommendations)论文的阅读笔记背景模型代码论文地址:PLE背景 多任务学习(multi-tasklearning,MTL):给定m个学习任务,这m个任务或它们的一个子集彼此相关但不完全相同。简单地说就是一个模型
- composer中常提及到到PSR-4,什么是PSR呢
php转go
什么是PSRPSR是PHPStandardRecommendations(PHP推荐标准)的简写,由PHPFIG组织制定的PHP规范,是PHP开发的实践标准。PHPFIG,FIG是FrameworkInteroperabilityGroup(框架可互用性小组)的缩写,由几位开源框架的开发者成立于2009年,从那开始也选取了很多其他成员进来(包括但不限于Laravel,Joomla,Drupal,C
- 如何减小iOS包的大小
kakao6
https://www.jianshu.com/p/e76bdc940f28?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation1.配置编译选项GenetateDebugSymbols设置为NO2.适当舍弃架构arm73.删除无用的图片和音频文件LSUnusedResource
- Writing a Letter of Recommendation
0b23fbe0244f
WritingaLetterofRecommendationAddendumtoMakingtheRightMoves:APracticalGuidetoScientificManagementforPostdocsandNewFacultysecondeditionBurroughsWellcomeFundHowardHughesMedicalInstituteMakingtheRightMov
- 联邦推荐系统相关论文创新点总结
jieHeEternity
联邦学习联邦学习深度学习推荐系统联邦推荐系统
FD-GATDR:AFederated-Decentralized-LearningGraphAttentionNetworkforDoctorRecommendationUsingEHR本文的主要内容是基于电子健康记录(EHR)构建了一个医生推荐系统。该系统通过分析患者的EHR历史,提供个性化的医生推荐,以改善医疗系统的运行效率和发展远程医疗服务。为了解决数据异构性和数据隐私的挑战,文中提出了一
- Arxiv网络科学论文摘要4篇(2019-03-27)
ComplexLY
GEVR:针对手机用户群的活动场所推荐系统;生物医学领域科学与技术联动演变分析;通过筛选相关矩阵构建网络:零模型方法;利用动力学的网络重构与社区检测;GEVR:针对手机用户群的活动场所推荐系统原文标题:GEVR:AnEventVenueRecommendationSystemforGroupsofMobileUsers地址:http://arxiv.org/abs/1903.10512作者:Jas
- 推荐系统行为序列建模-GRU4Rec
GelaBute
深度学习session
推荐系统行为序列建模-GRU4Rec1.模型结构2.优化2.1SESSION-PARALLELMINI-BATCHES2.2SAMPLINGONTHEOUTPUT3.Loss《SESSION-BASEDRECOMMENDATIONSWITHRECURRENTNEURALNETWORKS》论文基于单次会话session进行推荐。1.模型结构整体结构比较简单,通过RNN的堆叠来抽取序列信息input:
- 因果推断推荐系统工具箱 - ULTR-CP(三)
processor4d
文章名称【WSDM-2021】【JilinUniversity-JD】UnbiasedLearningtoRankinFeedsRecommendation核心要点前两节,我们完整的描述了,作者提出的ULTR-CP以及如何利用regression-basedEM的方法来求解combinationalpropensity(准确的说,只有相关性用了regression,其他的都还是不同的EM,并且相关
- 推荐系统模型(一) DFN 详解 Deep Feedback Network for Recommendation
WitsMakeMen
推荐算法
背景在大多数的推荐系统中,往往注重于隐式正反馈(例如:点击),而忽略掉用户的其他行为(例如大多数CTR模型只考虑用户的喜欢,而忽略了不喜欢)。腾讯在DeepFeedbackNetworkforRecommendation一文中,提出了一个新颖的推荐系统模型,该模型使用了一个新的神经网络框架,考虑了用户显式/隐式的正负反馈,通过大量的实验证实了该模型的有效性和鲁棒性。先验知识显式反馈(explici
- 联邦学习论文阅读:Federated collaborative filtering
thormas1996
联邦学习联邦学习论文阅读
今年一月刚挂上arXiv的一篇联邦推荐文章Federatedcollaborativefilteringforprivacy-preservingpersonalizedrecommendationsystem。摘要作者将一个隐形反馈的CF模型修改成了联邦学习的框架,隐私性用Fed-Avg算法保证。总的来说,没什么创新。问题在保护用户隐私的情况下利用隐性反馈进行推荐框架一个横向联邦的框架,和goo
- 论文阅读:A Survey on Neural Recommendation: From Collaborative Filtering to Content and Context Enriched
三金samkam
论文阅读推荐系统深度学习机器学习人工智能神经网络
论文名字ASurveyonNeuralRecommendation:FromCollaborativeFilteringtoContentandContextEnrichedRecommendation来源年份2021.4.27作者LeWuMember,IEEE,XiangnanHeMember,IEEE,XiangWangMember,IEEE,KunZhangMember,IEEE,andMe
- django电影推荐系统
哈都婆
django
电影推荐启动./bin/pycharm.shdjango-adminstartprojectmovie_recommendation_projectcdmovie_recommendation_project/pythonmanage.pymovie_recommendation_apppythonmanage.pystartappmovle_recommendation_applspythonm
- 重点句式52
俗世尘沙
今天的句子:Irecognisethepositiveimpactthatmanyoftherecommendationscouldhave,suchasbanningfreeoffersforjunkfoodandrestrictionsonadvertising,andusingtaxincentivestomakehealthyfoodcheaper.Butyoucannothaveacom
- 可解释推荐系统工具箱 - VECF(一)
processor4d
文章名称【SIGIR-2019】【Tsinghua/RutgersUniversity】PersonalizedFashionRecommendationwithVisualExplanationsbasedonMultimodalAttentionNetwork核心要点文章旨在流行商品推荐领域中,物品图片影响力大,但不同用户对图片的不同部分注意程度不一的问题。利用用户评论文本信息作为弱监督信号,
- Do you have any recommendations...
有乌云
Haveanyrecommendationsforsth推荐...Ontherecommendationofsb/onsb'srecommendation在某人推荐之下...aletterofrecommendation/arecommendationletter推荐信Doyouhaveanyrecommendationsforanice,balancedred?Wechosethehotelon
- 因果推断推荐系统工具箱 - CausCF: Causal Collaborative Filtering for Recommendation Effect Estimation(一)
processor4d
文章名称【CIKM-2021】CausCF:CausalCollaborativeFilteringforRecommendationEffectEstimation核心要点通常我们都希望推荐系统能够更高效的推荐物品,但是高效率如何界定?文章作者认为最高效的物品是能够提高营收概率的物品(因为用户喜欢才会买,同时平台也因此而得到利润)。然而,推荐天然存在因果推断的根本问题(未被推荐的物品的效果是缺失
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =