机器学习实战笔记--决策树-决策树基础

转自Jack Cui http://cuijiahua.com/blog/2017/11/ml_2_decision_tree_1.html

求香农熵

p(xi)是选择该分类的概率

机器学习实战笔记--决策树-决策树基础_第1张图片

from math import log

def calcShannonEnt(dataset):
    numEntries=len(dataset)#求数据集列表的行数
    labelCounts={}
    for featVec in dataset:
        currentLabel=featVec[-1]
        #如果该键不在字典中,则向字典中添加该键并赋值为0
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel]=0
        labelCounts[currentLabel]+=1
    shannonEnt=0.0
    for key in labelCounts:
        prob=float(labelCounts[key])/numEntries
        shannonEnt-=prob*log(prob,2)
    return shannonEnt
def createDataSet():
    dataSet=[[0, 0, 0, 0, 'no'],                       
             [0, 0, 0, 1, 'no'],
             [0, 1, 0, 1, 'yes'],
             [0, 1, 1, 0, 'yes'],
             [0, 0, 0, 0, 'no'],
             [1, 0, 0, 0, 'no'],
             [1, 0, 0, 1, 'no'],
             [1, 1, 1, 1, 'yes'],
             [1, 0, 1, 2, 'yes'],
             [1, 0, 1, 2, 'yes'],
             [2, 0, 1, 2, 'yes'],
             [2, 0, 1, 1, 'yes'],
             [2, 1, 0, 1, 'yes'],
             [2, 1, 0, 2, 'yes'],
             [2, 0, 0, 0, 'no']]
    labels=["不放贷","放贷"]
    return dataSet,labels

dataSet,features=createDataSet()
shannon=calcShannonEnt(dataSet)
print("熵:",shannon)

机器学习实战笔记--决策树-决策树基础_第2张图片

根据特征划分数据集:

学习划分技巧

def splitDataSet(dataSet,axis,value):
    retDataSet=[]
    for featVec in dataSet:
       if featVec[axis]==value:
           reducedFeatVec=featVec[:axis]
           #注意extend和append的区别
           reducedFeatVec.extend(featVec[axis+1:])#[]
           retDataSet.append(reducedFeatVec)#[[]]          
    return retDataSet

newDataSet=splitDataSet(dataSet,0,0)
print("重新划分的数据集为:",newDataSet)

 

 计算信息增益

机器学习实战笔记--决策树-决策树基础_第3张图片

def chooseBestFeatureToSplit(dataSet):
    numFeatures=len(dataSet[0])-1
    bestInfoGain=0.0
    bestFeature=-1
    for i in range(numFeatures):
        #当i=0时,[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2]
        featList=[example[i] for example in dataSet]
        uniqueVals=set(featList)#元素不可重复
        newEntropy=0.0
        for value in uniqueVals:
            subDataSet=splitDataSet(dataSet,i,value)
            prob=len(subDataSet)/float(len(dataSet))
            newEntropy+=prob*calcShannonEnt(subDataSet)
        infoGain=shannon-newEntropy
        print("第%d个特征的增益为%.3f"%(i,infoGain))
        if(infoGain>bestInfoGain):
            bestInfoGain=infoGain
            bestFeature=i
    return bestFeature
    
print("最优特征索引值:"+str(chooseBestFeatureToSplit(dataSet)))

机器学习实战笔记--决策树-决策树基础_第4张图片

你可能感兴趣的:(代码)