这次谈话CyclicBarrier栅栏,如可以从它的名字可以看出,它是可重复使用。
它的功能和CountDownLatch类别似,也让一组线程等待,然后开始往下跑起来。但也有在两者之间有一些差别
1. 不同的对象等。CountDownLatch组线程等待的是一个事件。或者说是一个计数器归0的事件。而CyclicBarrier等待的对象是线程,仅仅有线程都到齐了才往下运行
2. 使用方式不同,这个也是由等待的对象不同引起的,CountDownLatch须要调用await()来让线程等待。调用countDown()来改动状态,直到触发状态为0的事件。而CyclicBarrier仅仅须要调用await()让线程等待,当调用await()方法的线程数满足条件。就自己主动唤醒全部线程往下运行
3. CyclicBarrier能够自己主动循环使用,当一次拦截被打开后,会自己主动创建下一个拦截。CountDownLatch的计数器归0后不能再次使用
4. 底层实现不同,CountDownLatch使用AQS来实现底层同步,CyclicBarrier基于更上层的ReetrantLock + Condition条件队列实现
5. 失效机制不同,在CountDownLatch等待的线程假设被中断或者超时取消,不会影响其它线程。而CyclicBarrier採用all-or-none的机制,要么所有不通过,要么所有都通过。也就是说一旦在CyclicBarrier等待的线程有一个被中断或者超时取消,那么其它所有在这个CyclicBarrier等待的线程都被唤醒,通过栅栏往下运行
6. CyclicBarrier支持线程所有通过之后的回调功能,通过传入一个Runnable对象。由最后一个到达的线程来运行。而CountDownLatch不支持回调机制
以下看看CyclicBarrier的源码,它有一个内部类Generation来处理循环使用的问题,维护了一个broker状态表示当前的栅栏是否失效。假设失效,能够重置栅栏的状态。
当栅栏被打破时,就设置当前generation的broker为true表示失效,并唤醒全部等待的线程,即all-or-none机制
private static class Generation {
boolean broken = false;
}
private void nextGeneration() {
// signal completion of last generation
trip.signalAll();
// set up next generation
count = parties;
generation = new Generation();
}
private void breakBarrier() {
generation.broken = true;
count = parties;
trip.signalAll();
}
维护了一个ReentrantLock来作同步。并创建了一个相关的条件队列Condition,使用Condition的await()方法让线程在同一个条件队列等待。使用Condition.signalAll()唤醒全部在通过一条件队列等待的线程。
/** The lock for guarding barrier entry */
private final ReentrantLock lock = new ReentrantLock();
/** Condition to wait on until tripped */
private final Condition trip = lock.newCondition();
维护了一个Runnable引用来支持回调功能
/* The command to run when tripped */
private final Runnable barrierCommand;
public CyclicBarrier(int parties, Runnable barrierAction) {
if (parties <= 0) throw new IllegalArgumentException();
this.parties = parties;
this.count = parties;
this.barrierCommand = barrierAction;
}
维护了一个count来计数,当await()方法被调用一次, count就减1,直到count为0打开栅栏。
private int count;
能够看到CyclicBarrier的实例属性都没有使用volatile变量。那它怎么保证状态的可见性呢?CyclicBarrier使用了加显式锁的方式。我们知道显式锁和内置锁一样,都保证了可见性,有序性和原子性。
1. 进入锁相当于读volatile,会清空CPU缓存,强制从内存读取
2. 离开锁相当于写volatile,会把CPU写缓冲区的数据强制刷新到内存
CyclicBarrier经常使用支持普通的等待和限时的等待。最后都是落到了dowait()方法。
public int await() throws InterruptedException, BrokenBarrierException {
try {
return dowait(false, 0L);
} catch (TimeoutException toe) {
throw new Error(toe); // cannot happen;
}
}
public int await(long timeout, TimeUnit unit)
throws InterruptedException,
BrokenBarrierException,
TimeoutException {
return dowait(true, unit.toNanos(timeout));
}
来看看dowait方法
1. 必须先获取锁,保证了可见性,有序性,原子性
2. 推断当前栅栏的状态,假设已经失效,抛出BrokerBarrierException异常
3. 假设线程被中断。那么让栅栏失效,会唤醒全部等待线程往下运行
4. 运行一次dowait就对count减一,用index记录下当前线程运行是的count值作为索引
5. 假设index == 0表示是最后到达的线程,能够打开栅栏了。首先假设有回调。就运行回调。然后重置栅栏状态,使之能够循环使用,返回0
6. 假设index不为0,表示不是最后到达的线程,就轮询等待,这里支持了限时操作,使用了Condition条件队列的await()机制。直到超时或者栅栏被正常失效。栅栏失效后会使用Condition来唤醒全部在同一个条件队列等待的线程。
private int dowait(boolean timed, long nanos)
throws InterruptedException, BrokenBarrierException,
TimeoutException {
final ReentrantLock lock = this.lock;
lock.lock();
try {
final Generation g = generation;
if (g.broken)
throw new BrokenBarrierException();
if (Thread.interrupted()) {
breakBarrier();
throw new InterruptedException();
}
int index = --count;
if (index == 0) { // tripped
boolean ranAction = false;
try {
final Runnable command = barrierCommand;
if (command != null)
command.run();
ranAction = true;
nextGeneration();
return 0;
} finally {
if (!ranAction)
breakBarrier();
}
}
// loop until tripped, broken, interrupted, or timed out
for (;;) {
try {
if (!timed)
trip.await();
else if (nanos > 0L)
nanos = trip.awaitNanos(nanos);
} catch (InterruptedException ie) {
if (g == generation && ! g.broken) {
breakBarrier();
throw ie;
} else {
// We're about to finish waiting even if we had not
// been interrupted, so this interrupt is deemed to
// "belong" to subsequent execution.
Thread.currentThread().interrupt();
}
}
if (g.broken)
throw new BrokenBarrierException();
if (g != generation)
return index;
if (timed && nanos <= 0L) {
breakBarrier();
throw new TimeoutException();
}
}
} finally {
lock.unlock();
}
}
以下使用一个測试用例来測试CyclicBarrier的功能
1. 创建一个5个容量的CyclicBarrier,并设置回调
2. 执行12个线程
package com.lock.test;
import java.util.concurrent.CyclicBarrier;
public class CyclicBarrierUsecase {
private CyclicBarrier barrier = new CyclicBarrier(5, new Runnable(){
@Override
public void run() {
System.out.println("Callback is running");
}
});
public void race() throws Exception{
System.out.println("Thread " + Thread.currentThread().getName() + " is waiting the resource");
barrier.await();
System.out.println("Thread " + Thread.currentThread().getName() + " got the resource");
}
public static void main(String[] args){
final CyclicBarrierUsecase usecase = new CyclicBarrierUsecase();
for(int i = 0; i < 12; i++){
Thread t = new Thread(new Runnable(){
@Override
public void run() {
try {
usecase.race();
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}, String.valueOf(i));
t.start();
}
}
}
測试结果:
1. 能够看到5个线程在等待。直到满5个线程到达之后打开栅栏,这5个线程往下运行,并运行回调
2. 栅栏被循环使用了。又有5个线程等待。直到满5个线程到达又打开栅栏往下运行。并运行回调
3. 栅栏又被循环使用,可是仅仅有2个线程,不满5个,就一直等待
Thread 0 is waiting the resource
Thread 4 is waiting the resource
Thread 5 is waiting the resource
Thread 3 is waiting the resource
Thread 2 is waiting the resource
Callback is running
Thread 1 is waiting the resource
Thread 0 got the resource
Thread 2 got the resource
Thread 6 is waiting the resource
Thread 7 is waiting the resource
Thread 4 got the resource
Thread 9 is waiting the resource
Thread 8 is waiting the resource
Thread 3 got the resource
Thread 5 got the resource
Callback is running
Thread 8 got the resource
Thread 1 got the resource
Thread 7 got the resource
Thread 6 got the resource
Thread 10 is waiting the resource
Thread 11 is waiting the resource
Thread 9 got the resource
版权声明:本文博客原创文章。博客,未经同意,不得转载。