- MATLAB骨架化形态学运算专题详解
本文还有配套的精品资源,点击获取简介:骨架化是一种减少图像复杂度、提取主要结构的技术,在MATLAB中通过bwmorph函数进行。本专题涵盖了骨架化的基本原理、相关函数、实际应用以及如何通过形态学操作如膨胀、腐蚀、开闭运算来优化结果。骨架化在医学图像分析、工业检测和生物图像分析等领域有广泛应用。掌握骨架化技术有助于提升图像处理的效率和准确性。1.骨架化概念与重要性1.1骨架化的定义与基本概念在数字
- 【图像处理入门】12. 综合项目与进阶:超分辨率、医学分割与工业检测
小米玄戒Andrew
图像处理:从入门到专家图像处理人工智能深度学习算法python计算机视觉CV
摘要本周将聚焦三个高价值的综合项目,打通传统算法与深度学习的技术壁垒。通过图像超分辨率重建对比传统方法与深度学习方案,掌握医学图像分割的U-Net实现,设计工业缺陷检测的完整流水线。每个项目均包含原理解析、代码实现与性能优化,帮助读者从“技术应用”迈向“系统设计”。一、项目1:图像超分辨率重建(从模糊到清晰的跨越)1.技术背景与核心指标超分辨率(SR)是通过算法将低分辨率(LR)图像恢复为高分辨率
- 医学图像增强的层级化模糊与虚拟仪器无参考质量评价研究【附代码】
拉勾科研工作室
计算机视觉图像处理人工智能
算法与建模领域的探索者|专注数据分析与智能模型设计✨擅长算法、建模、数据分析matlab、python、仿真✅具体问题可以私信或查看文章底部二维码✅感恩科研路上每一位志同道合的伙伴!(1)层级模糊隶属度的X光医学图像增强算法针对X光医学图像普遍存在的对比度差、细节模糊等问题,本算法提出了一种基于层级模糊隶属度的增强方法。该方法的核心思想在于利用拉普拉斯金字塔分解图像,并在多尺度下分层计算模糊隶属度
- [arXiv 2024] Medical SAM 2: Segment Medical Images as Video via Segment Anything Model 2
alfred_torres
医学图像分割SAM2
arXiv2024|MedicalSAM2:通用2D/3D医学分割新范式,“把医学图像当视频分割”论文信息标题:MedicalSAM2:SegmentMedicalImagesasVideoviaSegmentAnythingModel2作者:JiayuanZhu,AbdullahHamdi,YunliQi,YuemingJin,JundeWu单位:牛津大学、新加坡国立大学项目主页:https:/
- UNet改进(5):线性注意力机制(Linear Attention)-原理详解与代码实现
摸鱼许可证
人工智能计算机视觉
引言在计算机视觉领域,UNet架构因其在图像分割任务中的卓越表现而广受欢迎。近年来,注意力机制的引入进一步提升了UNet的性能。本文将深入分析一个结合了线性注意力机制的UNet实现,探讨其设计原理、代码实现以及在医学图像分割等任务中的应用潜力。UNet架构概述UNet最初由Ronneberger等人提出,主要用于生物医学图像分割。其独特的U形结构由编码器(下采样路径)和解码器(上采样路径)组成,通
- Java医学图像处理系统实战源码剖析
好学的Jack
本文还有配套的精品资源,点击获取简介:本项目详细介绍了基于Java的医学图像处理系统,通过使用Java提供的图像处理库和多线程技术,实现了医疗图像的读取、预处理、分析、分割、存储及报告生成等关键功能。系统不仅支持多种图像格式和数据库集成,还考虑了用户界面设计和数据安全性,为医疗领域的图像分析需求提供了解决方案。学生和开发者可通过源码学习和实践,深入了解如何构建一个功能全面的医学图像处理平台。1.J
- 在VTK中捕捉体绘制图像并实时图像处理
点PY
三维渲染图像处理人工智能VTK
0.概要这段代码实现了一个高级的医学图像可视化系统,主要特点包括双窗口交互式体绘制、图像后处理和实时同步。1.核心功能架构主窗口:3D体绘制视图(GPU加速的体积渲染)副窗口:2D截图视图(带高斯模糊后处理)交互机制:副窗口的交互操作会实时影响主窗口的3D视图2.关键组件分析2.1自定义交互器(CustomInteractorStyle)classCustomInteractorStyle:
- 在VTK中捕捉体绘制图像进阶(同步操作)
点PY
三维渲染microsoftwindows
0.概要这段代码实现了一个VTK(VisualizationToolkit)应用程序,主要功能是:读取DICOM医学图像序列并进行体绘制(VolumeRendering)创建一个主窗口显示3D体绘制结果创建一个副窗口显示主窗口的2D截图将副窗口中的交互操作(如旋转、缩放等)转发到主窗口,而不影响副窗口本身1.代码解析以下是代码的详细解析:初始化和头文件部分包含必要的VTK模块初始化宏和头文件初始化
- 医图论文 AAAI‘25 | VOILA: 基于体素与语言交互的复杂度感知CT图像通用分割方法
小白学视觉
医学图像处理论文解读人工智能计算机视觉医学图像处理论文解读深度学习AAAI
论文信息题目:VOILA:Complexity-AwareUniversalSegmentationofCTimagesbyVoxelInteractingwithLanguageVOILA:基于体素与语言交互的复杂度感知CT图像通用分割方法作者:ZishuoWan,YuGao,WanyuanPang,DaweiDing论文创新点引入体素级对比学习:本文首次将体素级对比学习引入医学图像分割任务。通
- 推荐文章:Faster_Mean_Shift - GPU加速的像素嵌入框架利器
乌芬维Maisie
推荐文章:Faster_Mean_Shift-GPU加速的像素嵌入框架利器去发现同类优质开源项目:https://gitcode.com/在生物医学图像处理和细胞追踪领域,高效且精准的算法是必不可少的工具。今天,我们向您推荐一个优秀的开源项目——Faster_Mean_Shift,这是一个基于GPU加速的快速均值漂移算法,特别为递归神经网络(RNN)像素嵌入框架设计,用于整体细胞分割和跟踪。1、项
- (十三)计算机视觉中的深度学习:特征表示、模型架构与视觉认知原理
只有左边一个小酒窝
深度学习计算机视觉深度学习人工智能
1计算机视觉简介计算机视觉(ComputerVision)是一门使计算机能够从图像或视频中获取、处理和理解视觉信息的学科。它结合了信号处理、机器学习和深度学习等领域的技术,以实现对图像和视频内容的自动分析和理解。1.1计算机视觉的任务计算机视觉的任务多种多样,以下是一些常见的任务:图像分类(ImageClassification):定义:将图像分为预定义的类别。应用场景:自动照片标注、医学图像诊断
- 医图论文 Arxiv‘24 | SEG-SAM:用于统一医学图像分割的语义引导SAM
小白学视觉
医学图像处理论文解读医学图像处理医学图像顶会Arxiv论文解读深度学习
论文信息题目:SEG-SAM:Semantic-GuidedSAMforUnifiedMedicalImageSegmentationSEG-SAM:用于统一医学图像分割的语义引导SAM作者:ShuangpingHuang,HaoLiang,QingfengWang,ChulongZhong,ZijianZhou,MiaojingShi论文创新点语义感知解码器:作者提出了一个独立的语义感知解码器(
- nnUNet V2修改网络——暴力替换网络为Swin-Unet
w1ndfly
nnU-NetV2修改网络nnunet深度学习人工智能机器学习nnunetv2
更换前,要用nnUNetV2跑通所用数据集,证明nnUNetV2、数据集、运行环境等没有问题阅读nnU-NetV2的U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。Swin-Unet是一种基于纯Transformer的U型编码器-解码器架构,专为医学图像分割任务设计。传统方法主要依赖卷积神经网络(CNN),尤其是U-Net及其变体,通过局部卷积操作和跳跃连接提取多尺度特征。然
- nnUNet V2修改网络——加入MultiResBlock模块
w1ndfly
nnU-NetV2修改网络深度学习人工智能卷积神经网络计算机视觉机器学习nnunetnnU-NetV2
更换前,要用nnUNetV2跑通所用数据集,证明nnUNetV2、数据集、运行环境等没有问题阅读nnU-NetV2的U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。MultiResBlock是MultiResUNet中核心组件之一,旨在解决传统U-Net在处理多尺度医学图像时的局限性。传统的U-Net使用固定大小的卷积核(如3x3),这在处理具有不同尺度特征的医学图像时可能不
- 跨视角差异-依赖网络用于体积医学图像分割|文献速递-生成式模型与transformer在医学影像中的应用
Title题目Cross-viewdiscrepancy-dependencynetworkforvolumetricmedicalimagesegmentation跨视角差异-依赖网络用于体积医学图像分割01文献速递介绍医学图像分割旨在从原始图像中分离出受试者的解剖结构(例如器官和肿瘤),并为每个像素分配语义类别,这在许多临床应用中起着至关重要的作用,如器官建模、疾病诊断和治疗规划(Shamsh
- 全网最全医学图像数据汇总
概述⚠️重要声明:这些数据集仅适用于学术研究用途。目录CT数据集MRI数据集超声数据集内窥镜数据集病理数据集多模态数据集PET数据集OCT数据集皮肤镜数据集CT数据集名称任务类型部位格式数量下载链接MSDLung分割肺3D96下载MSDLiver分割肝脏3D201下载MSDSpleen分割脾脏3D61下载MSDHepaticVessels分割肝门静脉3D443下载MSDPancreas分割胰腺3D
- Ubuntu 安装 FSL 及多模态脑MRI的去颅骨处理(含 HD-BET 深度学习方法)
Joker 007
医学影像处理ubuntu深度学习linux
脑部医学图像处理的第一步通常是去颅骨(SkullStripping),也叫脑提取(BrainExtraction)。本文将介绍如何在Ubuntu系统中安装FSL,使用其经典工具BET进行T1、T2、PD模态的去颅骨操作,并补充介绍基于深度学习的更强大方法HD-BET。一、FSL安装与环境配置(Ubuntu)FSL(FMRIBSoftwareLibrary)是牛津大学开发的医学图像处理工具集,支持大
- 干货分享 | 关于 UNet 架构的8个热门面试问题
老唐777
人工智能机器学习深度学习计算机视觉图像处理面试python
前言UNet架构是专门为图像分割任务设计的深度学习模型。由于其能够处理高分辨率图像并生成准确的分割图,因此广泛应用于各种应用,例如医学图像分割、卫星图像分析和自动驾驶车辆中的目标检测。UNet非常适合多类图像分割任务,但可能需要平衡训练数据或使用概率分割图来处理类重叠或不平衡的类分布。本文主要介绍关于UNet架构的8个热门面试问题,希望对你有所帮助。资料分享正式开始之前,为了方便大家学习,我整理了
- YOLOv10改进 | Conv篇 | YOLOv10添加Mamba模块 (Mamba-Yolov10为目标检测、医学图像分割等任务带来新的发展和进步)
Ai缝合怪YOLO涨点改进
YOLOv8v10YOLOv8YOLO目标检测人工智能计算机视觉yolov8yolov10mamba
YOLOv8v10专栏限时99元订阅链接:限时99元去b站关注:AI缝合怪订阅YOLOv8v10创新改进高效涨点+持续改进300多篇(订阅的小伙伴,终身免费享有后续YOLOv11或是其他版本的改进专栏)目录一、Mamba模块介绍VSSmamba模块结构mamba模块动机CNN主要局限性:Transformer主要局限性:二、VSS模块核心代码三、手把手教你添加VSSBlock模块和修改task.p
- 跨平台三维可视化与图形库.VTK图形库.
yuanpan
信息可视化数据可视化
1.科学数据可视化体绘制(VolumeRendering)用于医学影像(如CT、MRI)、气象数据(如云层、流体模拟)的三维渲染,支持透明度、光照和颜色映射。等值面提取(Iso-Surfacing)通过算法(如MarchingCubes)从标量数据中提取表面(如医学图像中的器官轮廓)。流场可视化显示向量场(如风场、流体动力学),支持流线(Streamlines)、粒子追踪(ParticleTrac
- ITK-SNAP中手动修改已存在的标注
phyllis_110
其他经验分享
对于医学图像标注,完全手动进行可谓是相当费时费力,因此,目前大家使用最多的就是自动与手动结合,但自动化的图像标注往往不是很尽如人意,这个时候就需要我们手动的进行修改。在这里,我们使用的是ITK-SNAP软件。以下是使用具体步骤:1.打开原始图像和自动化标记图像2.接下来,首先选中下图中的刷子标识,然后在activatelabel中选择clearlabel3.对不想要的区域进行涂抹4.全部完成之后,
- nnUNet V2修改网络——暴力替换网络为UCTransNet
w1ndfly
nnU-NetV2修改网络nnU-NetV2nnunet深度学习计算机视觉机器学习
更换前,要用nnUNetV2跑通所用数据集,证明nnUNetV2、数据集、运行环境等没有问题阅读nnU-NetV2的U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。UCTransNet是一种创新的医学图像分割网络,它重新思考了U-Net中的跳跃连接设计。该网络以U-Net为基础架构,引入了通道变换器(CTrans)模块,专门用于替代传统的跳跃连接。其核心在于多尺度通道交叉融合
- UNet 改进(26):与FPN结合的图像分割网络
点我头像干啥
Unet模型改进transformer深度学习人工智能
1.介绍在计算机视觉领域,图像分割是一个核心任务,而UNet架构因其优异的性能在医学图像分割等领域广受欢迎。本文将详细解析一个结合了UNet和特征金字塔网络(FPN)的创新架构,展示如何通过融合两种经典网络的优势来提升分割性能。网络架构概述这个代码实现了一个结合UNet和FPN的混合架构,主要包含以下几个关键组件:DoubleConv模块:基础的双卷积块FPN模块:特征金字塔网络UNetWithF
- 性能远超 SAM 系模型,苏黎世大学等开发通用 3D 血管分割基础模型,入选 CVPR 2025
hyperai
如果把人的身体比作一座庞大的城市,那么血管无疑就是这座城市的「道路」,动脉、静脉以及毛细血管对应着高速公路、城市道路以及乡间小道,它们相互协作,通过血液将营养物质、氧气等输送到身体各处,从而维持着这座「城市」的高效、稳定运行。而当这些道路出现问题时,人们的身体自然也会随之发生病变。血管分割是检查这些「道路」是否存在问题的重要手段,如同城市建设中通过交通影像发现问题一般,它是医学图像处理中的一项关键
- 深度学习---常用优化器
灬0灬灬0灬
深度学习人工智能
优化器一:Adam(AdaptiveMomentEstimation)一、适用场景总结(实践导向)场景是否推荐用Adam说明小模型训练(如MLP、CNN)✅✅✅稳定、无需复杂调参,适合快速实验初学者使用或结构新颖✅✅容错率高,容易收敛医学图像初步建模✅✅常用于baseline训练复杂大模型(如Transformer)❌不推荐替代方案为AdamW,更稳定二、PyTorch代码与推荐参数设置impor
- MoE Align & Sort在医院AI医疗领域的前景分析(代码版)
Allen_Lyb
医疗数智化教程人工智能健康医疗数据分析架构
MoEAlign&Sort技术通过优化混合专家模型(MoE)的路由与计算流程,在医疗数据处理、模型推理效率及多模态任务协同中展现出显著优势,其技术价值与应用意义从以下三方面展开分析:一、方向分析1、提升医疗数据处理效率在医疗场景中,多模态数据(如医学影像、文本报告、传感器信号等)的高效处理是关键挑战。Med-MoE模型通过多模态医学对齐与域特定MoE调整,将医学图像与文本数据对齐,结合专家模型的领
- 神经网络开发实战:从零基础到企业级应用(含CNN、RNN、BP网络代码详解)
Android洋芋
神经网络cnnrnn深度学习激活函数与损失函数神经网络分层架构反向传播与参数优化
简介神经网络作为深度学习的核心,正在成为现代AI应用的基石。从基础的感知机到复杂的Transformer架构,从图像识别到自然语言处理,神经网络技术的演进推动了人工智能的快速发展。本文将系统介绍神经网络的核心概念、主流模型及其实现原理,并通过三个企业级实战案例(医学图像分类、对话系统开发和光伏预测)展示如何从零开始构建神经网络应用。每个案例都包含完整的Python代码实现、详细解释和部署策略,确保
- 【计算机视觉】OpenCV项目实战:基于OpenCV的图像分割技术深度解析与实践指南
白熊188
计算机视觉计算机视觉opencv人工智能
基于OpenCV的图像分割技术深度解析与实践指南项目概述与技术背景项目核心特点传统分割算法分类环境配置与项目结构系统要求安装步骤项目结构解析核心算法实现解析1.阈值分割(Otsu方法)2.Canny边缘检测3.分水岭算法实战应用指南1.基础分割流程2.多算法比较框架3.医学图像分割专项常见问题与解决方案1.过分割问题2.边缘断裂问题3.光照不均影响性能优化技巧1.多尺度处理2.ROI优先处理3.并
- AI服务器通常会运用在哪些场景当中?
wanhengidc
人工智能服务器运维
人工智能行业作为现代科技的杰出代表,在多个领域当中发展其强大的应用能力和价值,随之,AI服务器也在各个行业中日益显现出来,为各个行业提供了强大的计算能力和处理能力,帮助企业处理复杂的大规模数据,本文将来探索一下AI服务器通常都会运用在哪些场景当中吧!AI服务器可以运用在医疗教育当中,用于医学图像分析和基因组学研究等场景中,能够帮助其加速医学研究的速度,并且可以提高医学诊断的准确性,对国家医学领域发
- ERDUnet: An Efficient Residual Double-codingUnet for Medical Image Segmentation
医学分割哇哇哇哇哇哇哇哇哇
机器学习人工智能
ERDUnet:一种用于医学图像分割的高效残差双编码单元摘要医学图像分割在临床诊断中有着广泛的应用,基于卷积神经网络的分割方法已经能够达到较高的准确率。然而,提取全局上下文特征仍然很困难,而且参数太大,无法临床应用。为此,我们提出了一种新的网络结构来改进传统的编码器-解码器网络模型,在保持分割精度的同时节省了参数。通过构造一个能够同时提取局部特征和全局连续性信息的编码器模块,提高了特征提取效率。设
- SAX解析xml文件
小猪猪08
xml
1.创建SAXParserFactory实例
2.通过SAXParserFactory对象获取SAXParser实例
3.创建一个类SAXParserHander继续DefaultHandler,并且实例化这个类
4.SAXParser实例的parse来获取文件
public static void main(String[] args) {
//
- 为什么mysql里的ibdata1文件不断的增长?
brotherlamp
linuxlinux运维linux资料linux视频linux运维自学
我们在 Percona 支持栏目经常收到关于 MySQL 的 ibdata1 文件的这个问题。
当监控服务器发送一个关于 MySQL 服务器存储的报警时,恐慌就开始了 —— 就是说磁盘快要满了。
一番调查后你意识到大多数地盘空间被 InnoDB 的共享表空间 ibdata1 使用。而你已经启用了 innodbfileper_table,所以问题是:
ibdata1存了什么?
当你启用了 i
- Quartz-quartz.properties配置
eksliang
quartz
其实Quartz JAR文件的org.quartz包下就包含了一个quartz.properties属性配置文件并提供了默认设置。如果需要调整默认配置,可以在类路径下建立一个新的quartz.properties,它将自动被Quartz加载并覆盖默认的设置。
下面是这些默认值的解释
#-----集群的配置
org.quartz.scheduler.instanceName =
- informatica session的使用
18289753290
workflowsessionlogInformatica
如果希望workflow存储最近20次的log,在session里的Config Object设置,log options做配置,save session log :sessions run ;savesessio log for these runs:20
session下面的source 里面有个tracing 
- Scrapy抓取网页时出现CRC check failed 0x471e6e9a != 0x7c07b839L的错误
酷的飞上天空
scrapy
Scrapy版本0.14.4
出现问题现象:
ERROR: Error downloading <GET http://xxxxx CRC check failed
解决方法
1.设置网络请求时的header中的属性'Accept-Encoding': '*;q=0'
明确表示不支持任何形式的压缩格式,避免程序的解压
- java Swing小集锦
永夜-极光
java swing
1.关闭窗体弹出确认对话框
1.1 this.setDefaultCloseOperation (JFrame.DO_NOTHING_ON_CLOSE);
1.2
this.addWindowListener (
new WindowAdapter () {
public void windo
- 强制删除.svn文件夹
随便小屋
java
在windows上,从别处复制的项目中可能带有.svn文件夹,手动删除太麻烦,并且每个文件夹下都有。所以写了个程序进行删除。因为.svn文件夹在windows上是只读的,所以用File中的delete()和deleteOnExist()方法都不能将其删除,所以只能采用windows命令方式进行删除
- GET和POST有什么区别?及为什么网上的多数答案都是错的。
aijuans
get post
如果有人问你,GET和POST,有什么区别?你会如何回答? 我的经历
前几天有人问我这个问题。我说GET是用于获取数据的,POST,一般用于将数据发给服务器之用。
这个答案好像并不是他想要的。于是他继续追问有没有别的区别?我说这就是个名字而已,如果服务器支持,他完全可以把G
- 谈谈新浪微博背后的那些算法
aoyouzi
谈谈新浪微博背后的那些算法
本文对微博中常见的问题的对应算法进行了简单的介绍,在实际应用中的算法比介绍的要复杂的多。当然,本文覆盖的主题并不全,比如好友推荐、热点跟踪等就没有涉及到。但古人云“窥一斑而见全豹”,希望本文的介绍能帮助大家更好的理解微博这样的社交网络应用。
微博是一个很多人都在用的社交应用。天天刷微博的人每天都会进行着这样几个操作:原创、转发、回复、阅读、关注、@等。其中,前四个是针对短博文,最后的关注和@则针
- Connection reset 连接被重置的解决方法
百合不是茶
java字符流连接被重置
流是java的核心部分,,昨天在做android服务器连接服务器的时候出了问题,就将代码放到java中执行,结果还是一样连接被重置
被重置的代码如下;
客户端代码;
package 通信软件服务器;
import java.io.BufferedWriter;
import java.io.OutputStream;
import java.io.O
- web.xml配置详解之filter
bijian1013
javaweb.xmlfilter
一.定义
<filter>
<filter-name>encodingfilter</filter-name>
<filter-class>com.my.app.EncodingFilter</filter-class>
<init-param>
<param-name>encoding<
- Heritrix
Bill_chen
多线程xml算法制造配置管理
作为纯Java语言开发的、功能强大的网络爬虫Heritrix,其功能极其强大,且扩展性良好,深受热爱搜索技术的盆友们的喜爱,但它配置较为复杂,且源码不好理解,最近又使劲看了下,结合自己的学习和理解,跟大家分享Heritrix的点点滴滴。
Heritrix的下载(http://sourceforge.net/projects/archive-crawler/)安装、配置,就不罗嗦了,可以自己找找资
- 【Zookeeper】FAQ
bit1129
zookeeper
1.脱离IDE,运行简单的Java客户端程序
#ZkClient是简单的Zookeeper~$ java -cp "./:zookeeper-3.4.6.jar:./lib/*" ZKClient
1. Zookeeper是的Watcher回调是同步操作,需要添加异步处理的代码
2. 如果Zookeeper集群跨越多个机房,那么Leader/
- The user specified as a definer ('aaa'@'localhost') does not exist
白糖_
localhost
今天遇到一个客户BUG,当前的jdbc连接用户是root,然后部分删除操作都会报下面这个错误:The user specified as a definer ('aaa'@'localhost') does not exist
最后找原因发现删除操作做了触发器,而触发器里面有这样一句
/*!50017 DEFINER = ''aaa@'localhost' */
原来最初
- javascript中showModelDialog刷新父页面
bozch
JavaScript刷新父页面showModalDialog
在页面中使用showModalDialog打开模式子页面窗口的时候,如果想在子页面中操作父页面中的某个节点,可以通过如下的进行:
window.showModalDialog('url',self,‘status...’); // 首先中间参数使用self
在子页面使用w
- 编程之美-买书折扣
bylijinnan
编程之美
import java.util.Arrays;
public class BookDiscount {
/**编程之美 买书折扣
书上的贪心算法的分析很有意思,我看了半天看不懂,结果作者说,贪心算法在这个问题上是不适用的。。
下面用动态规划实现。
哈利波特这本书一共有五卷,每卷都是8欧元,如果读者一次购买不同的两卷可扣除5%的折扣,三卷10%,四卷20%,五卷
- 关于struts2.3.4项目跨站执行脚本以及远程执行漏洞修复概要
chenbowen00
strutsWEB安全
因为近期负责的几个银行系统软件,需要交付客户,因此客户专门请了安全公司对系统进行了安全评测,结果发现了诸如跨站执行脚本,远程执行漏洞以及弱口令等问题。
下面记录下本次解决的过程以便后续
1、首先从最简单的开始处理,服务器的弱口令问题,首先根据安全工具提供的测试描述中发现应用服务器中存在一个匿名用户,默认是不需要密码的,经过分析发现服务器使用了FTP协议,
而使用ftp协议默认会产生一个匿名用
- [电力与暖气]煤炭燃烧与电力加温
comsci
在宇宙中,用贝塔射线观测地球某个部分,看上去,好像一个个马蜂窝,又像珊瑚礁一样,原来是某个国家的采煤区.....
不过,这个采煤区的煤炭看来是要用完了.....那么依赖将起燃烧并取暖的城市,在极度严寒的季节中...该怎么办呢?
&nbs
- oracle O7_DICTIONARY_ACCESSIBILITY参数
daizj
oracle
O7_DICTIONARY_ACCESSIBILITY参数控制对数据字典的访问.设置为true,如果用户被授予了如select any table等any table权限,用户即使不是dba或sysdba用户也可以访问数据字典.在9i及以上版本默认为false,8i及以前版本默认为true.如果设置为true就可能会带来安全上的一些问题.这也就为什么O7_DICTIONARY_ACCESSIBIL
- 比较全面的MySQL优化参考
dengkane
mysql
本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了,可以参考本站的一些优化案例或者联系我,下方有我的联系方式。这是上篇。
1、硬件层相关优化
1.1、CPU相关
在服务器的BIOS设置中,可
- C语言homework2,有一个逆序打印数字的小算法
dcj3sjt126com
c
#h1#
0、完成课堂例子
1、将一个四位数逆序打印
1234 ==> 4321
实现方法一:
# include <stdio.h>
int main(void)
{
int i = 1234;
int one = i%10;
int two = i / 10 % 10;
int three = i / 100 % 10;
- apacheBench对网站进行压力测试
dcj3sjt126com
apachebench
ab 的全称是 ApacheBench , 是 Apache 附带的一个小工具 , 专门用于 HTTP Server 的 benchmark testing , 可以同时模拟多个并发请求。前段时间看到公司的开发人员也在用它作一些测试,看起来也不错,很简单,也很容易使用,所以今天花一点时间看了一下。
通过下面的一个简单的例子和注释,相信大家可以更容易理解这个工具的使用。
- 2种办法让HashMap线程安全
flyfoxs
javajdkjni
多线程之--2种办法让HashMap线程安全
多线程之--synchronized 和reentrantlock的优缺点
多线程之--2种JAVA乐观锁的比较( NonfairSync VS. FairSync)
HashMap不是线程安全的,往往在写程序时需要通过一些方法来回避.其实JDK原生的提供了2种方法让HashMap支持线程安全.
- Spring Security(04)——认证简介
234390216
Spring Security认证过程
认证简介
目录
1.1 认证过程
1.2 Web应用的认证过程
1.2.1 ExceptionTranslationFilter
1.2.2 在request之间共享SecurityContext
1
- Java 位运算
Javahuhui
java位运算
// 左移( << ) 低位补0
// 0000 0000 0000 0000 0000 0000 0000 0110 然后左移2位后,低位补0:
// 0000 0000 0000 0000 0000 0000 0001 1000
System.out.println(6 << 2);// 运行结果是24
// 右移( >> ) 高位补"
- mysql免安装版配置
ldzyz007
mysql
1、my-small.ini是为了小型数据库而设计的。不应该把这个模型用于含有一些常用项目的数据库。
2、my-medium.ini是为中等规模的数据库而设计的。如果你正在企业中使用RHEL,可能会比这个操作系统的最小RAM需求(256MB)明显多得多的物理内存。由此可见,如果有那么多RAM内存可以使用,自然可以在同一台机器上运行其它服务。
3、my-large.ini是为专用于一个SQL数据
- MFC和ado数据库使用时遇到的问题
你不认识的休道人
sqlC++mfc
===================================================================
第一个
===================================================================
try{
CString sql;
sql.Format("select * from p
- 表单重复提交Double Submits
rensanning
double
可能发生的场景:
*多次点击提交按钮
*刷新页面
*点击浏览器回退按钮
*直接访问收藏夹中的地址
*重复发送HTTP请求(Ajax)
(1)点击按钮后disable该按钮一会儿,这样能避免急躁的用户频繁点击按钮。
这种方法确实有些粗暴,友好一点的可以把按钮的文字变一下做个提示,比如Bootstrap的做法:
http://getbootstrap.co
- Java String 十大常见问题
tomcat_oracle
java正则表达式
1.字符串比较,使用“==”还是equals()? "=="判断两个引用的是不是同一个内存地址(同一个物理对象)。 equals()判断两个字符串的值是否相等。 除非你想判断两个string引用是否同一个对象,否则应该总是使用equals()方法。 如果你了解字符串的驻留(String Interning)则会更好地理解这个问题。
- SpringMVC 登陆拦截器实现登陆控制
xp9802
springMVC
思路,先登陆后,将登陆信息存储在session中,然后通过拦截器,对系统中的页面和资源进行访问拦截,同时对于登陆本身相关的页面和资源不拦截。
实现方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23