入选Gartner和Forrester报告的AnalyticDB是如何实现PB级数据分析毫秒级响应

前言 

2018年3月13日,Forrester发布了最新的云化数据仓库分析报告( Now Tech: Cloud Data Warehouse, Q1 2018),阿里巴巴同亚马逊,谷歌,微软四个世界级云厂商共同进入领先者阵营。同时今年二月份Gartner发布的分析型数据管理平台报告中( Magic Quadrant for Data Management Solutions for Analytics),阿里巴巴第一次参评即进入魔力四象限。这体现了阿里巴巴多年来在打造 DT商业过程中的大量数据分析技术积累。阿里巴巴的整套数据分析平台基于阿里飞天分布式系统打造,其核心的产品包括大数据计算服务MaxCompute 和分析型数据库AnalyticDB,以及数加DataWorks 等。其中AnalyticDB作为分布式分析型数据库,更是承载了将数据探索实时化,在线化的关键任务。

AnalyticDB早期出身于阿里巴巴集团内部为数据分析业务打造的在线分析系统,无论是淘宝天猫的广告营销平台,还是蚂蚁金服的风控、征信等业务,AnalyticDB产品的使命就是将数据价值探索做到实时在线化,提供大并发下的毫秒级分析查询响应。当面对具备上千个标签属性的消费人群和千亿级别的交易记录,数据分析师在做市场趋势分析,业务研判和广告投放时,需要在PB级数据上依据不断变化的业务模型做分析探索,对业务发展方向进行决策。如何以极低的成本和毫秒级的响应时延支持数据探索,释放海量数据的商业价值,就是这些年来AnalyticDB产品不断演进的方向。

PB级数据分析,毫秒级响应

AnalyticDB数据库构建的最初理念就是以低成本提供极致性能的数据分析探索能力。传统企业BI分析,数据往往先经过离线的ETL批处理过程,之后再基于固定的业务模型,以多维报表形式做分析结果展现。这种模式下,数据分析的实时性,业务发展的敏捷性受到制约,数据价值的释放和数据分析师的工作受到约束。AnalyticDB基于传统MPP数据库架构,支持高扩展采用流水线的计算模式,同时创新的引入多项黑科技,支撑海量数据的高性能在线实时分析。

我有几张阿里云幸运券分享给你,用券购买或者升级阿里云相应产品会有特惠惊喜哦!把想要买的产品的幸运券都领走吧!快下手,马上就要抢光了。

  • 新硬件加速 利用阿里云IaaS层的垂直整合优势,全面引入SSD卡存储,较传统磁盘存储 I/O带宽提升10倍以上。AnalyticDB今年即将上线的GPU加速特性,将数据分析里的计算密集型操作卸载到GPU,利用GPU高并行计算能力,提升复杂数据计算的性能。已经在广告等数据探索类业务上验证,性能平均提升5倍以上。
  • 曦和分析计算引擎 AnalyticDB 在17年全面升级为新一代曦和分布式计算引擎,整体采用MPP架构,支持DAG计算模型,节点内引入LLVM等运行时代码编译优化技术,性能提升一倍以上。数据分析任务在曦和计算引擎内被打散成小颗粒的计算单元,引擎内置分时轮询的计算调度机制,可以保证高并发下作业任务的稳定运行。
  • 智能存储索引 AnalyticDB支持创新的行列混存,同时针对不同的数据类型在数据加载写入时,智能的构建多种维度索引,包括B+索引、区间索引、倒排索引、位图索引等,并对传统索引算法进行创新,引入动态过滤、延迟物化等方式,极大的降低I/O,实现高性能的点或范围的检索,支持万亿级记录关联分析。
  • 读写分离架构 在各类生产运营系统里,随着移动端应用以及物联网的兴起,高性能的写入成为分析类系统的强需求。AnalyticDB整体采用读写分离架构,除支持大批量数据加载外,也支持每秒千万条记录的写入,写入成功即持久化保存在盘古分布式文件系统里,根据用户配置支持不同的数据一致性级别。
原文链接

你可能感兴趣的:(入选Gartner和Forrester报告的AnalyticDB是如何实现PB级数据分析毫秒级响应)