BUGKU加密题rsa详解+脚本

BUGKU加密题rsa详解+脚本_第1张图片

首先,我们分析一下这个题,这个题是根据RSA加密算法,我们知道了n,e,密文求明文
N = p*q(p,q均为素数)
我们用Wiener’s attack脚本进行分解素数
求出p,q后,我们进行解密求出明文,脚本如下

先分解一下素数

def continued_fractions_expansion(numerator,denominator):#(e,N)
    result=[]
 
    divident=numerator%denominator
    quotient=numerator/denominator
    result.append(quotient)
 
    while divident!=0:
        numerator=numerator-quotient*denominator
 
        tmp=denominator
        denominator=numerator
        numerator=tmp
 
        divident=numerator%denominator
        quotient=numerator/denominator
        result.append(quotient)
 
    return result
 
def convergents(expansion):
    convergents=[(expansion[0],1)]
    for i in range(1,len(expansion)):
        numerator=1
        denominator=expansion[i]
        for j in range(i-1,-1,-1):
            numerator+=expansion[j]*denominator
            if j==0:
                break
            tmp=denominator
            denominator=numerator
            numerator=tmp
        convergents.append((numerator,denominator))#(k,d)
    return convergents
 
def newtonSqrt(n):
    approx = n/2
    better = (approx + n/approx)/2
    while better != approx:
        approx = better
        better = (approx + n/approx)/2
    return approx
 
def wiener_attack(cons,e,N):
    for cs in cons:
        k,d=cs
        if k==0:
            continue
        phi_N=(e*d-1)/k
        #x**2-((N-phi_N)+1)*x+N=0
        a=1
        b=-((N-phi_N)+1)
        c=N
        delta = b*b - 4*a*c
        if delta<=0:
            continue
        x1= (newtonSqrt(delta)-b)/(2*a)
        x2=-(newtonSqrt(delta)+b)/(2*a)
        if x1*x2==N:
            return [x1,x2,k,d]
 
 
N=460657813884289609896372056585544172485318117026246263899744329237492701820627219556007788200590119136173895989001382151536006853823326382892363143604314518686388786002989248800814861248595075326277099645338694977097459168530898776007293695728101976069423971696524237755227187061418202849911479124793990722597
e=354611102441307572056572181827925899198345350228753730931089393275463916544456626894245415096107834465778409532373187125318554614722599301791528916212839368121066035541008808261534500586023652767712271625785204280964688004680328300124849680477105302519377370092578107827116821391826210972320377614967547827619
 
expansion=continued_fractions_expansion(e,N)
cons=convergents(expansion)
 
p,q,k,d=wiener_attack(cons,e,N)
print p
print q

BUGKU加密题rsa详解+脚本_第2张图片
再求出明文

import binascii
import sys 
sys.setrecursionlimit(1000000)
def ByteToHex(bins):
    return ''.join(["%02X" % x for x in bins]).strip()
def n2s(num):
    t = hex(num)[2:-1]  # python
    if len(t) % 2 == 1:
        t = '0' + t
    #print(t)
    return(binascii.a2b_hex(t).decode('latin1'))
def egcd(a, b):
    if a == 0:
        return (b, 0, 1)
    else:
        g, y, x = egcd(b % a, a)
        return (g, x - (b // a) * y, y)
def modinv(a, m):
    g, x, y = egcd(a, m)
    if g != 1:
        print('modular inverse does not exist')
        return 'null'
    else:
        return x % m
c = 38230991316229399651823567590692301060044620412191737764632384680546256228451518238842965221394711848337832459443844446889468362154188214840736744657885858943810177675871991111466653158257191139605699916347308294995664530280816850482740530602254559123759121106338359220242637775919026933563326069449424391192
p = 28805791771260259486856902729020438686670354441296247148207862836064657849735343618207098163901787287368569768472521344635567334299356760080507454640207003
q = 15991846970993213322072626901560749932686325766403404864023341810735319249066370916090640926219079368845510444031400322229147771682961132420481897362843199
e = 354611102441307572056572181827925899198345350228753730931089393275463916544456626894245415096107834465778409532373187125318554614722599301791528916212839368121066035541008808261534500586023652767712271625785204280964688004680328300124849680477105302519377370092578107827116821391826210972320377614967547827619
n = p * q
d = modinv(e, (p - 1) * (q - 1))
m = pow(c, d, n)
print (m)

BUGKU加密题rsa详解+脚本_第3张图片
之后我们得到明文,最后一步就是将数字转为字符串:

import binascii
def n2s(num):
    t = hex(num)[2:-1]  # python
    if len(t) % 2 == 1:
        t = '0' + t
    #print(t)
    return(binascii.a2b_hex(t).decode('latin1'))
print(n2s(42134526936705472951339882390913202211002951999415321980512196989))

BUGKU加密题rsa详解+脚本_第4张图片
flag{Wien3r_4tt@ck_1s_3AsY}

你可能感兴趣的:(BUGKU加密题rsa详解+脚本)