累加器用来对信息进行聚合,通常在向 Spark传递函数时,比如使用 map() 函数或者用 filter() 传条件时,可以使用驱动器程序中定义的变量,但是集群中运行的每个任务都会得到这些变量的一份新的副本,更新这些副本的值也不会影响驱动器中的对应变量。如果我们想实现所有分片处理时更新共享变量的功能,那么累加器可以实现我们想要的效果。
1.系统累加器
针对一个输入的日志文件,如果我们想计算文件中所有空行的数量,我们可以编写以下程序:
scala> val notice = sc.textFile("./NOTICE")
notice: org.apache.spark.rdd.RDD[String] = ./NOTICE MapPartitionsRDD[40] at textFile at :32
scala> val blanklines = sc.accumulator(0)
warning: there were two deprecation warnings; re-run with -deprecation for details
blanklines: org.apache.spark.Accumulator[Int] =
scala> val tmp = notice.flatMap(line => {
| if (line == "") {
| blanklines += 1
| }
| line.split(" ")
| })
tmp: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[41] at flatMap at :36
scala> tmp.count()
res31: Long = 3213
scala> blanklines.value
res32: Int = 171
累加器的用法如下所示。
通过在驱动器中调用SparkContext.accumulator(initialValue)方法,创建出存有初始值的累加器。返回值为 org.apache.spark.Accumulator[T] 对象,其中 T 是初始值 initialValue 的类型。Spark闭包里的执行器代码可以使用累加器的 += 方法(在Java中是 add)增加累加器的值。 驱动器程序可以调用累加器的value属性(在Java中使用value()或setValue())来访问累加器的值。
注意:工作节点上的任务不能访问累加器的值。从这些任务的角度来看,累加器是一个只写变量。
对于要在行动操作中使用的累加器,Spark只会把每个任务对各累加器的修改应用一次。因此,如果想要一个无论在失败还是重复计算时都绝对可靠的累加器,我们必须把它放在 foreach() 这样的行动操作中。转化操作中累加器可能会发生不止一次更新
2.自定义累加器
自定义累加器类型的功能在1.X版本中就已经提供了,但是使用起来比较麻烦,在2.0版本后,累加器的易用性有了较大的改进,而且官方还提供了一个新的抽象类:AccumulatorV2来提供更加友好的自定义类型累加器的实现方式。实现自定义类型累加器需要继承AccumulatorV2并至少覆写下例中出现的方法,下面这个累加器可以用于在程序运行过程中收集一些文本类信息,最终以Set[String]的形式返回。
package com.atguigu.spark
import org.apache.spark.util.AccumulatorV2
import org.apache.spark.{SparkConf, SparkContext}
import scala.collection.JavaConversions._
class LogAccumulator extends org.apache.spark.util.AccumulatorV2[String, java.util.Set[String]] {
private val _logArray: java.util.Set[String] = new java.util.HashSet[String]()
override def isZero: Boolean = {
_logArray.isEmpty
}
override def reset(): Unit = {
_logArray.clear()
}
override def add(v: String): Unit = {
_logArray.add(v)
}
override def merge(other: org.apache.spark.util.AccumulatorV2[String, java.util.Set[String]]): Unit = {
other match {
case o: LogAccumulator => _logArray.addAll(o.value)
}
}
override def value: java.util.Set[String] = {
java.util.Collections.unmodifiableSet(_logArray)
}
override def copy():org.apache.spark.util.AccumulatorV2[String, java.util.Set[String]] = {
val newAcc = new LogAccumulator()
_logArray.synchronized{
newAcc._logArray.addAll(_logArray)
}
newAcc
}
}
// 过滤掉带字母的
object LogAccumulator {
def main(args: Array[String]) {
val conf=new SparkConf().setAppName("LogAccumulator")
val sc=new SparkContext(conf)
val accum = new LogAccumulator
sc.register(accum, "logAccum")
val sum = sc.parallelize(Array("1", "2a", "3", "4b", "5", "6", "7cd", "8", "9"), 2).filter(line => {
val pattern = """^-?(\d+)"""
val flag = line.matches(pattern)
if (!flag) {
accum.add(line)
}
flag
}).map(_.toInt).reduce(_ + _)
println("sum: " + sum)
for (v <- accum.value) print(v + "")
println()
sc.stop()
}
}
广播变量用来高效分发较大的对象。向所有工作节点发送一个较大的只读值,以供一个或多个Spark操作使用。比如,如果你的应用需要向所有节点发送一个较大的只读查询表,甚至是机器学习算法中的一个很大的特征向量,广播变量用起来都很顺手。 在多个并行操作中使用同一个变量,但是 Spark会为每个任务分别发送。
scala> val broadcastVar = sc.broadcast(Array(1, 2, 3))
broadcastVar: org.apache.spark.broadcast.Broadcast[Array[Int]] = Broadcast(35)
scala> broadcastVar.value
res33: Array[Int] = Array(1, 2, 3)
使用广播变量的过程如下:
(1) 通过对一个类型 T 的对象调用 SparkContext.broadcast 创建出一个 Broadcast[T] 对象。 任何可序列化的类型都可以这么实现。
(2) 通过 value 属性访问该对象的值(在 Java 中为 value() 方法)。
(3) 变量只会被发到各个节点一次,应作为只读值处理(修改这个值不会影响到别的节点)。
RDD相关概念关系
输入可能以多个文件的形式存储在HDFS上,每个File都包含了很多块,称为Block。当Spark读取这些文件作为输入时,会根据具体数据格式对应的InputFormat进行解析,一般是将若干个Block合并成一个输入分片,称为InputSplit,注意InputSplit不能跨越文件。随后将为这些输入分片生成具体的Task。InputSplit与Task是一一对应的关系。随后这些具体的Task每个都会被分配到集群上的某个节点的某个Executor去执行。
(1)每个节点可以起一个或多个Executor。
(2)每个Executor由若干core组成,每个Executor的每个core一次只能执行一个Task。
(3)每个Task执行的结果就是生成了目标RDD的一个partiton。
注意: 这里的core是虚拟的core而不是机器的物理CPU核,可以理解为就是Executor的一个工作线程。而 Task被执行的并发度 = Executor数目 * 每个Executor核数。至于partition的数目:
(1)对于数据读入阶段,例如sc.textFile,输入文件被划分为多少InputSplit就会需要多少初始Task。
(2)在Map阶段partition数目保持不变。
(3)在Reduce阶段,RDD的聚合会触发shuffle操作,聚合后的RDD的partition数目跟具体操作有关,例如repartition操作会聚 合成指定分区数,还有一些算子是可配置的。
RDD在计算的时候,每个分区都会起一个task,所以rdd的分区数目决定了总的的task数目。申请的计算节点(Executor)数目和每个计算节点核数,决定了你同一时刻可以并行执行的task。
比如的RDD有100个分区,那么计算的时候就会生成100个task,你的资源配置为10个计算节点,每个两2个核,同一时刻可以并行的task数目为20,计算这个RDD就需要5个轮次。如果计算资源不变,你有101个task的话,就需要6个轮次,在最后一轮中,只有一个task在执行,其余核都在空转。如果资源不变,你的RDD只有2个分区,那么同一时刻只有2个task运行,其余18个核空转,造成资源浪费。这就是在spark调优中,增大RDD分区数目,增大任务并行度的做法。