动手学深度学习pytorch版学习笔记——Kaggle图像分类2(ImageNet Dogs)

Kaggle上的狗品种识别(ImageNet Dogs)

在本节中,我们将解决Kaggle竞赛中的犬种识别挑战,比赛的网址是https://www.kaggle.com/c/dog-breed-identification 在这项比赛中,我们尝试确定120种不同的狗。该比赛中使用的数据集实际上是著名的ImageNet数据集的子集。

# 在本节notebook中,使用后续设置的参数在完整训练集上训练模型,大致需要40-50分钟
# 合理安排GPU时长,尽量只在训练时切换到GPU资源
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import torchvision.models as models
import os
import shutil
import time
import pandas as pd
import random
# 设置随机数种子
random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed(0)

整理数据集

我们可以从比赛网址上下载数据集,其目录结构为:

| Dog Breed Identification
    | train
    |   | 000bec180eb18c7604dcecc8fe0dba07.jpg
    |   | 00a338a92e4e7bf543340dc849230e75.jpg
    |   | ...
    | test
    |   | 00a3edd22dc7859c487a64777fc8d093.jpg
    |   | 00a6892e5c7f92c1f465e213fd904582.jpg
    |   | ...
    | labels.csv
    | sample_submission.csv

train和test目录下分别是训练集和测试集的图像,训练集包含10,222张图像,测试集包含10,357张图像,图像格式都是JPEG,每张图像的文件名是一个唯一的id。labels.csv包含训练集图像的标签,文件包含10,222行,每行包含两列,第一列是图像id,第二列是狗的类别。狗的类别一共有120种。

我们希望对数据进行整理,方便后续的读取,我们的主要目标是:

  • 从训练集中划分出验证数据集,用于调整超参数。划分之后,数据集应该包含4个部分:划分后的训练集、划分后的验证集、完整训练集、完整测试集
  • 对于4个部分,建立4个文件夹:train, valid, train_valid, test。在上述文件夹中,对每个类别都建立一个文件夹,在其中存放属于该类别的图像。前三个部分的标签已知,所以各有120个子文件夹,而测试集的标签未知,所以仅建立一个名为unknown的子文件夹,存放所有测试数据。

我们希望整理后的数据集目录结构为:

| train_valid_test
    | train
    |   | affenpinscher
    |   |   | 00ca18751837cd6a22813f8e221f7819.jpg
    |   |   | ...
    |   | afghan_hound
    |   |   | 0a4f1e17d720cdff35814651402b7cf4.jpg
    |   |   | ...
    |   | ...
    | valid
    |   | affenpinscher
    |   |   | 56af8255b46eb1fa5722f37729525405.jpg
    |   |   | ...
    |   | afghan_hound
    |   |   | 0df400016a7e7ab4abff824bf2743f02.jpg
    |   |   | ...
    |   | ...
    | train_valid
    |   | affenpinscher
    |   |   | 00ca18751837cd6a22813f8e221f7819.jpg
    |   |   | ...
    |   | afghan_hound
    |   |   | 0a4f1e17d720cdff35814651402b7cf4.jpg
    |   |   | ...
    |   | ...
    | test
    |   | unknown
    |   |   | 00a3edd22dc7859c487a64777fc8d093.jpg
    |   |   | ...
data_dir = '/home/kesci/input/Kaggle_Dog6357/dog-breed-identification'  # 数据集目录
label_file, train_dir, test_dir = 'labels.csv', 'train', 'test'  # data_dir中的文件夹、文件
new_data_dir = './train_valid_test'  # 整理之后的数据存放的目录
valid_ratio = 0.1  # 验证集所占比例

下边这块code其实就是将创建好的Dog Breed Identification文件夹(包含train、test、labels.csv、sample_submission.csv)里的文件根据id和对应类别复制到新创建的train_valid_test文件夹(包含train、valid、train_valid、test子文件夹)中。

def mkdir_if_not_exist(path):
    # 若目录path不存在,则创建目录
    if not os.path.exists(os.path.join(*path)):
        os.makedirs(os.path.join(*path))
        
def reorg_dog_data(data_dir, label_file, train_dir, test_dir, new_data_dir, valid_ratio):
    # 读取训练数据标签
    labels = pd.read_csv(os.path.join(data_dir, label_file))
    id2label = {Id: label for Id, label in labels.values}  # (key: value): (id: label)

    # 随机打乱训练数据
    train_files = os.listdir(os.path.join(data_dir, train_dir)) # os.listdir() 方法用于返回指定的文件夹包含的文件或文件夹的名字的列表。 由train文件夹里所有图片组成的列表。
    random.shuffle(train_files)   #将train文件里的所有.jpg图片打乱顺序

    # 原训练集
    valid_ds_size = int(len(train_files) * valid_ratio)  # 验证集大小
    for i, file in enumerate(train_files):
        img_id = file.split('.')[0]  # file是形式为id.jpg的字符串
        img_label = id2label[img_id]
        if i < valid_ds_size:
            mkdir_if_not_exist([new_data_dir, 'valid', img_label]) #[]里面是path,新建了valid文件夹
            shutil.copy(os.path.join(data_dir, train_dir, file),
                        os.path.join(new_data_dir, 'valid', img_label)) #复制train文件夹里的某一file到新建的train_valid_test文件夹的valid子文件夹里的子类别文件夹img_label中
        else:
            mkdir_if_not_exist([new_data_dir, 'train', img_label])
            shutil.copy(os.path.join(data_dir, train_dir, file),
                        os.path.join(new_data_dir, 'train', img_label))
        mkdir_if_not_exist([new_data_dir, 'train_valid', img_label])
        shutil.copy(os.path.join(data_dir, train_dir, file),
                    os.path.join(new_data_dir, 'train_valid', img_label))

    # 测试集
    mkdir_if_not_exist([new_data_dir, 'test', 'unknown'])
    for test_file in os.listdir(os.path.join(data_dir, test_dir)): #遍历Dog Breed Identification文件夹中的test子文件夹里.jpg的图片文件
        shutil.copy(os.path.join(data_dir, test_dir, test_file),
                    os.path.join(new_data_dir, 'test', 'unknown')) #复制到新文件夹test/unknown中
reorg_dog_data(data_dir, label_file, train_dir, test_dir, new_data_dir, valid_ratio)

图像增强

transform_train = transforms.Compose([
    # 随机对图像裁剪出面积为原图像面积0.08~1倍、且高和宽之比在3/4~4/3的图像,再放缩为高和宽均为224像素的新图像
    transforms.RandomResizedCrop(224, scale=(0.08, 1.0),  
                                 ratio=(3.0/4.0, 4.0/3.0)),
    # 以0.5的概率随机水平翻转
    transforms.RandomHorizontalFlip(),
    # 随机更改亮度、对比度和饱和度
    transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
    transforms.ToTensor(),
    # 对各个通道做标准化,(0.485, 0.456, 0.406)和(0.229, 0.224, 0.225)是在ImageNet上计算得的各通道均值与方差
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  # ImageNet上的均值和方差
])

# 在测试集上的图像增强只做确定性的操作
transform_test = transforms.Compose([
    transforms.Resize(256),
    # 将图像中央的高和宽均为224的正方形区域裁剪出来
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

读取数据

torchvision.datasets.ImageFolder讲解

# new_data_dir目录下有train, valid, train_valid, test四个目录
# 这四个目录中,每个子目录表示一种类别,目录中是属于该类别的所有图像
train_ds = torchvision.datasets.ImageFolder(root=os.path.join(new_data_dir, 'train'),
                                            transform=transform_train)
valid_ds = torchvision.datasets.ImageFolder(root=os.path.join(new_data_dir, 'valid'),
                                            transform=transform_test)
train_valid_ds = torchvision.datasets.ImageFolder(root=os.path.join(new_data_dir, 'train_valid'),
                                            transform=transform_train)
test_ds = torchvision.datasets.ImageFolder(root=os.path.join(new_data_dir, 'test'),
                                            transform=transform_test)
batch_size = 128
train_iter = torch.utils.data.DataLoader(train_ds, batch_size=batch_size, shuffle=True)
valid_iter = torch.utils.data.DataLoader(valid_ds, batch_size=batch_size, shuffle=True)
train_valid_iter = torch.utils.data.DataLoader(train_valid_ds, batch_size=batch_size, shuffle=True)
test_iter = torch.utils.data.DataLoader(test_ds, batch_size=batch_size, shuffle=False)  # shuffle=False

定义模型

这个比赛的数据属于ImageNet数据集的子集,我们使用微调的方法,选用在ImageNet完整数据集上预训练的模型来抽取图像特征,以作为自定义小规模输出网络的输入。

此处我们使用与训练的ResNet-34模型,直接复用预训练模型在输出层的输入,即抽取的特征,然后我们重新定义输出层,本次我们仅对重定义的输出层的参数进行训练,而对于用于抽取特征的部分,我们保留预训练模型的参数。

衍生问题:

  • PyTorch之保存加载模型
  • Pytorch官网之保存和加载模型
def get_net(device):
    finetune_net = models.resnet34(pretrained=False)  # 预训练的resnet34网络
    finetune_net.load_state_dict(torch.load('/home/kesci/input/resnet347742/resnet34-333f7ec4.pth'))
    for param in finetune_net.parameters():  # 冻结参数
        param.requires_grad = False
    # 原finetune_net.fc是一个输入单元数为512,输出单元数为1000的全连接层
    # 替换掉原finetune_net.fc,新finetuen_net.fc中的模型参数会记录梯度
    finetune_net.fc = nn.Sequential(
        nn.Linear(in_features=512, out_features=256),
        nn.ReLU(),
        nn.Linear(in_features=256, out_features=120)  # 120是输出类别数
    )
    return finetune_net

定义训练函数

def evaluate_loss_acc(data_iter, net, device):
    # 计算data_iter上的平均损失与准确率
    loss = nn.CrossEntropyLoss()
    is_training = net.training  # Bool net是否处于train模式
    net.eval()
    l_sum, acc_sum, n = 0, 0, 0
    with torch.no_grad():
        for X, y in data_iter:
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l_sum += l.item() * y.shape[0]
            acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
            n += y.shape[0]
    net.train(is_training)  # 恢复net的train/eval状态
    return l_sum / n, acc_sum / n
def train(net, train_iter, valid_iter, num_epochs, lr, wd, device, lr_period,
          lr_decay):
    loss = nn.CrossEntropyLoss()
    optimizer = optim.SGD(net.fc.parameters(), lr=lr, momentum=0.9, weight_decay=wd)
    net = net.to(device)
    for epoch in range(num_epochs):
        train_l_sum, n, start = 0.0, 0, time.time()
        if epoch > 0 and epoch % lr_period == 0:  # 每lr_period个epoch,学习率衰减一次
            lr = lr * lr_decay
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr
        for X, y in train_iter:
            X, y = X.to(device), y.to(device)
            optimizer.zero_grad()
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            train_l_sum += l.item() * y.shape[0]
            n += y.shape[0]
        time_s = "time %.2f sec" % (time.time() - start)
        if valid_iter is not None:
            valid_loss, valid_acc = evaluate_loss_acc(valid_iter, net, device)
            epoch_s = ("epoch %d, train loss %f, valid loss %f, valid acc %f, "
                       % (epoch + 1, train_l_sum / n, valid_loss, valid_acc))
        else:
            epoch_s = ("epoch %d, train loss %f, "
                       % (epoch + 1, train_l_sum / n))
        print(epoch_s + time_s + ', lr ' + str(lr))

调参

num_epochs, lr_period, lr_decay = 20, 10, 0.1
lr, wd = 0.03, 1e-4
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
net = get_net(device)
train(net, train_iter, valid_iter, num_epochs, lr, wd, device, lr_period, lr_decay)

在完整数据集上训练模型

# 使用上面的参数设置,在完整数据集上训练模型大致需要40-50分钟的时间
net = get_net(device)
train(net, train_valid_iter, None, num_epochs, lr, wd, device, lr_period, lr_decay)

对测试集分类并提交结果

用训练好的模型对测试数据进行预测。比赛要求对测试集中的每张图片,都要预测其属于各个类别的概率。

preds = []
for X, _ in test_iter:
    X = X.to(device)
    output = net(X)
    output = torch.softmax(output, dim=1)
    preds += output.tolist() #将数组或矩阵转换成列表
ids = sorted(os.listdir(os.path.join(new_data_dir, 'test/unknown')))
with open('submission.csv', 'w') as f:
    f.write('id,' + ','.join(train_valid_ds.classes) + '\n')
    for i, output in zip(ids, preds):
        f.write(i.split('.')[0] + ',' + ','.join(
            [str(num) for num in output]) + '\n')
  • 练习题

1、整理数据集后得到的train、valid、train_valid和test数据集,下列说法中错误的是:(b)

  • a. 找到一组合适的超参数后,用train_valid重新训练网络

  • b. 可以利用train_valid数据集训练模型,通过观察在test数据集上的损失与准确率来调整超参数

  • c. 可以利用train数据集训练模型,通过观察在valid数据集上的损失与准确率来调整超参数

  • d. train和valid中对应的各个类别的样本比例应该相近

选项1:正确,train_valid包含全部的带标签数据,确定超参数后即可在train_valid上重新训练

选项2:错误,test数据集不包含样本的标签,无法计算损失和准确率

选项4:正确,划分数据集时应该尽可能保持数据分布的一致性

2、关于微调ResNet-34预训练模型进行图像分类的做法,下列说法中错误的是:(c)

  • a. 图像的类别发生变化,需要替换输出层

  • b. 由于我们不希望改变模型的特征提取部分的参数,所以可以对该部分参数设置requires_grad = False

  • c. 如果没有对模型的特征提取部分的参数设置requires_grad = False,则模型无法训练

  • d. 定义优化器时,只需传入输出层部分的模型参数

选项2:正确,这部分参数不参与训练,设置requires_grad = False冻结这些参数

选项3:错误,这种情况下模型仍可训练

选项4:正确,因为只需要训练输出层部分的模型参数

补充:

  • python shutil.copy()用法

​ shutil.copyfile(src, dst):复制文件内容(不包含元数据)从src到dst。dst必须是完整的目标文件名;如果src和dst是同一文件,就会引发错误shutil.Error。dst必须是可写的,否则将引发异常IOError。如果dst已经存在,它会被替换。特殊文件,例如字符或块设备和管道不能使用此功能,因为copyfile会打开并阅读文件。src和dst的是字符串形式的路径名。

  • Python中有join()和os.path.join()两个函数,具体作用如下:

    join():连接字符串数组。将字符串、元组、列表中的元素以指定的字符(分隔符)连接生成一个新的字符串
    os.path.join(): 将多个路径组合后返回

  • join()函数

语法: ‘sep’.join(seq)

参数说明
sep:分隔符。可以为空
seq:要连接的元素序列、字符串、元组、字典
上面的语法即:以sep作为分隔符,将seq所有的元素合并成一个新的字符串

返回值:返回一个以分隔符sep连接各个元素后生成的字符串

  • os.path.join()函数

语法: os.path.join(path1[,path2[,…]])

返回值:将多个路径组合后返回

注:第一个绝对路径之前的参数将被忽略

你可能感兴趣的:(动手学深度学习pytorch版学习笔记——Kaggle图像分类2(ImageNet Dogs))