LU分解(不考虑行交换)

A = L U A=LU A=LU

对矩阵 A A A L U LU LU分解(不考虑行交换)
A = [ a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 ] A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} A=a11a21a31a41a12a22a32a42a13a23a33a43a14a24a34a44
第一步,构造矩阵 M 1 M_{1} M1
M 1 = [ 1 0 0 0 − l 21 1 0 0 − l 31 0 1 0 − l 41 0 0 1 ] M_{1} = \left[ \begin{matrix} 1 & 0 & 0 & 0 \\ -l_{21} & 1 & 0 & 0 \\ -l_{31} & 0 & 1 & 0 \\ -l_{41} & 0 & 0 & 1 \end{matrix} \right] M1=1l21l31l41010000100001
其中 l i 1 = a i 1 a 11 , i = 2 , 3 , 4. \displaystyle l_{i1} =\frac{a_{i1}}{a_{11}}, i = 2, 3, 4. li1=a11ai1,i=2,3,4. 用矩阵 M 1 M_{1} M1左乘 A A A
M 1 A = [ a 11 a 12 a 13 a 14 0 a 22 ′ a 23 ′ a 24 ′ 0 a 32 ′ a 33 ′ a 34 ′ 0 a 42 ′ a 43 ′ a 44 ′ ] M_{1}A = \left[ \begin{matrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a'_{22} & a'_{23} & a'_{24} \\ 0 & a'_{32} & a'_{33} & a'_{34} \\ 0 & a'_{42} & a'_{43} & a'_{44} \end{matrix} \right] M1A=a11000a12a22a32a42a13a23a33a43a14a24a34a44
第二步,构造矩阵 M 2 M_{2} M2
M 2 = [ 1 0 0 0 0 1 0 0 0 − l 32 1 0 0 − l 42 0 1 ] M_{2} = \left[ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -l_{32} & 1 & 0 \\ 0 & -l_{42} & 0 & 1 \end{matrix} \right] M2=100001l32l4200100001
其中 l i 2 = a i 2 ′ a 22 ′ , i = 3 , 4. \displaystyle l_{i2} =\frac{a'_{i2}}{a'_{22}}, i = 3, 4. li2=a22ai2,i=3,4. 用矩阵 M 2 M_{2} M2左乘 M 1 A M_{1}A M1A
M 2 M 1 A = [ a 11 a 12 a 13 a 14 0 a 22 ′ a 23 ′ a 24 ′ 0 0 a 33 ′ ′ a 34 ′ ′ 0 0 a 43 ′ ′ a 44 ′ ′ ] M_{2}M_{1}A = \left[ \begin{matrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a'_{22} & a'_{23} & a'_{24} \\ 0 & 0 & a''_{33} & a''_{34} \\ 0 & 0 & a''_{43} & a''_{44} \end{matrix} \right] M2M1A=a11000a12a2200a13a23a33a43a14a24a34a44
第三步,构造矩阵 M 3 M_{3} M3
M 3 = [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 − l 43 1 ] M_{3} = \left[ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -l_{43} & 1 \end{matrix} \right] M3=10000100001l430001
其中 l 43 = a 43 ′ ′ a 33 ′ ′ . \displaystyle l_{43} =\frac{a''_{43}}{a''_{33}}. l43=a33a43. 用矩阵 M 3 M_{3} M3左乘矩阵 M 2 M 1 A M_{2}M_{1}A M2M1A
U = M 3 M 2 M 1 A = [ a 11 a 12 a 13 a 14 0 a 22 ′ a 23 ′ a 24 ′ 0 0 a 33 ′ ′ a 34 ′ ′ 0 0 0 a 44 ′ ′ ′ ] \begin{aligned} U &= M_{3}M_{2}M_{1}A \\ &= \left[ \begin{matrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a'_{22} & a'_{23} & a'_{24} \\ 0 & 0 & a''_{33} & a''_{34} \\ 0 & 0 & 0 & a'''_{44} \end{matrix} \right] \end{aligned} U=M3M2M1A=a11000a12a2200a13a23a330a14a24a34a44
用矩阵 ( M 3 M 2 M 1 ) (M_{3}M_{2}M_{1}) (M3M2M1)的逆矩阵 ( M 3 M 2 M 1 ) − 1 (M_{3}M_{2}M_{1})^{-1} (M3M2M1)1左乘上式
A = ( M 3 M 2 M 1 ) − 1 U = M 1 − 1 M 2 − 1 M 3 − 1 U = L U \begin{aligned} A &= (M_{3}M_{2}M_{1})^{-1}U \\ &= M_{1}^{-1}M_{2}^{-1}M_{3}^{-1}U \\ &= LU \end{aligned} A=(M3M2M1)1U=M11M21M31U=LU
其中
M 1 − 1 = [ 1 0 0 0 l 21 1 0 0 l 31 0 1 0 l 41 0 0 1 ] M_{1}^{-1} = \left[ \begin{matrix} 1 & 0 & 0 & 0 \\ l_{21} & 1 & 0 & 0 \\ l_{31} & 0 & 1 & 0 \\ l_{41} & 0 & 0 & 1 \end{matrix} \right] M11=1l21l31l41010000100001
M 2 − 1 = [ 1 0 0 0 0 1 0 0 0 l 32 1 0 0 l 42 0 1 ] M_{2}^{-1} = \left[ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & l_{32} & 1 & 0 \\ 0 & l_{42} & 0 & 1 \end{matrix} \right] M21=100001l32l4200100001
M 3 − 1 = [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 l 43 1 ] M_{3}^{-1} = \left[ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & l_{43} & 1 \end{matrix} \right] M31=10000100001l430001
L = M 1 − 1 M 2 − 1 M 3 − 1 = [ 1 0 0 0 l 21 1 0 0 l 31 l 32 1 0 l 41 l 42 l 43 1 ] \begin{aligned} L &= M_{1}^{-1}M_{2}^{-1}M_{3}^{-1} \\ &= \left[ \begin{matrix} 1 & 0 & 0 & 0 \\ l_{21} & 1 & 0 & 0 \\ l_{31} & l_{32} & 1 & 0 \\ l_{41} & l_{42} & l_{43} & 1 \end{matrix} \right] \end{aligned} L=M11M21M31=1l21l31l4101l32l42001l430001

算例

A = [ 10 − 7 0 5 − 1 5 − 3 2 6 ] A = \left[ \begin{matrix} 10 & -7 & 0 \\ 5 & -1 & 5 \\ -3 & 2 & 6 \end{matrix} \right] A=1053712056
按上述步骤对矩阵 A A A L U LU LU分解。第一步,构造矩阵 M 1 M_{1} M1
M 1 = [ 1 0 0 − 0.5 1 0 0.3 0 1 ] M_{1} = \left[ \begin{matrix} 1 & 0 & 0 \\ -0.5 & 1 & 0 \\ 0.3 & 0 & 1 \end{matrix} \right] M1=10.50.3010001
M 1 − 1 = [ 1 0 0 0.5 1 0 − 0.3 0 1 ] M_{1}^{-1} = \left[ \begin{matrix} 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ -0.3 & 0 & 1 \end{matrix} \right] M11=10.50.3010001
用矩阵 M 1 M_{1} M1左乘 A A A
M 1 A = [ 10 − 7 0 0 2.5 5 0 − 0.1 6 ] M_{1}A = \left[ \begin{matrix} 10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & -0.1 & 6 \end{matrix} \right] M1A=100072.50.1056
第二步,构造矩阵 M 2 M_{2} M2
M 2 = [ 1 0 0 0 1 0 0 0.04 1 ] M_{2} = \left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0.04 & 1 \end{matrix} \right] M2=100010.04001
M 2 − 1 = [ 1 0 0 0 1 0 0 − 0.04 1 ] M_{2}^{-1} = \left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -0.04 & 1 \end{matrix} \right] M21=100010.04001
用矩阵 M 2 M_{2} M2左乘 M 1 A M_{1}A M1A
U = M 2 M 1 A = [ 10 − 7 0 0 2.5 5 0 0 6.2 ] \begin{aligned} U &=M_{2}M_{1}A \\ &= \left[ \begin{matrix} 10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & 0 & 6.2 \end{matrix} \right] \end{aligned} U=M2M1A=100072.50056.2
L = M 1 − 1 M 2 − 1 = [ 1 0 0 0.5 1 0 − 0.3 − 0.04 1 ] \begin{aligned} L &=M_{1}^{-1}M_{2}^{-1} \\ &= \left[ \begin{matrix} 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ -0.3 & -0.04 & 1 \end{matrix} \right] \end{aligned} L=M11M21=10.50.3010.04001

你可能感兴趣的:(线性代数,线性代数,矩阵分解,LU分解)