HashMap源码分析

源码来自jdk1.8


  • 实现了Map接口
  • 可以有null键和null值(于此相对,HashTable不允许null,且是同步的)
  • get和put操作O(1)
  • 性能受initial capacity 和 load factor影响
  • 不同步,解决办法:

This is typically accomplished by synchronizing on some object that naturally encapsulates the map. If no such object exists, the map should be "wrapped" using the Collections.synchronizedMap method.

Map m = Collections.synchronizedMap(new HashMap(...));
  • iterator fast fail
public class HashMap extends AbstractMap
    implements Map, Cloneable, Serializable {
     /**
     * The default initial capacity - MUST be a power of two.
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    /**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<30.
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * The load factor used when none specified in constructor.
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * The bin count threshold for using a tree rather than list for a
     * bin.  Bins are converted to trees when adding an element to a
     * bin with at least this many nodes. The value must be greater
     * than 2 and should be at least 8 to mesh with assumptions in
     * tree removal about conversion back to plain bins upon
     * shrinkage.
     */
    static final int TREEIFY_THRESHOLD = 8;

    /**
     * The bin count threshold for untreeifying a (split) bin during a
     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
     * most 6 to mesh with shrinkage detection under removal.
     */
    static final int UNTREEIFY_THRESHOLD = 6;

    /**
     * The smallest table capacity for which bins may be treeified.
     * (Otherwise the table is resized if too many nodes in a bin.)
     * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
     * between resizing and treeification thresholds.
     */
    static final int MIN_TREEIFY_CAPACITY = 64;
    
    /* ---------------- Fields -------------- */

    /**
     * The table, initialized on first use, and resized as
     * necessary. When allocated, length is always a power of two.
     * (We also tolerate length zero in some operations to allow
     * bootstrapping mechanics that are currently not needed.)
     */
    transient Node[] table;

    /**
     * Holds cached entrySet(). Note that AbstractMap fields are used
     * for keySet() and values().
     */
    transient Set> entrySet;

    /**
     * The number of key-value mappings contained in this map.
     */
    transient int size;

    /**
     * The number of times this HashMap has been structurally modified
     * Structural modifications are those that change the number of mappings in
     * the HashMap or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the HashMap fail-fast.  (See ConcurrentModificationException).
     */
    transient int modCount;

    /**
     * The next size value at which to resize (capacity * load factor).
     *
     * @serial
     */
    // (The javadoc description is true upon serialization.
    // Additionally, if the table array has not been allocated, this
    // field holds the initial array capacity, or zero signifying
    // DEFAULT_INITIAL_CAPACITY.)
    int threshold;

    /**
     * The load factor for the hash table.
     *
     * @serial
     */
    final float loadFactor;
    // ....
}

常量中比较重要的几点

  • Capacity一直是2的幂,也就是下面table数组的长度
  • 默认装载因子0.75
  • bin由链表转化为红黑树的临界值是8

属性中比较重要的

  • Node[] table 是map存储键值对的对象,每个键值对就是一个实现了Entry接口的Node,table中的每个元素即是一个键值对Node,也是这个键值对链表的头节点,通过hash得到相同坐标的键值对通过链表链接在头节点后面
  • threshold resize()的临界值,也就是(Capacity*loadfactor)
  • loadFactor 装载因子
  • 这里要注意的是size指的是所有键值对的数量,而与table数组长度无关
HashMap源码分析_第1张图片
table结构

Node

static class Node implements Map.Entry {
        final int hash;
        final K key;
        V value;
        Node next;

        Node(int hash, K key, V value, Node next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry e = (Map.Entry)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

单个节点中要注意的是,节点的hash值和key都是final修饰的,而value和下一个节点next是可以更改的。
还有就是这个Node是链表结构的,所以转换为红黑树以后,要相应的换成树节点(也是Node类型的子类),后文会提到。

put

理解了put函数,也就理解了HashMap底层是如何存放键值对(Node)的.
put函数的流程大致如下:

  • 计算key的hash值,这里不仅是调用key.hashCode()函数,还有进一步的计算。
  • 通过hash值进一步计算键值对在数组中的位置,相同hash值的键值对在数组中的坐标相同,也就是说相同hash值的键值对处于同一个bin中,他们以链表的形式存放在数组的这个坐标下。
  • 如果是第一个就直接放,如果碰撞了就链接到链表后面去。
  • 如果链表>=TREEIFY_THRESHOLD,就将链表转换为红黑树(这样查找的时间由O(n)变为O(log(n)))
  • 如果节点存在就更新值,返回旧值
  • 如果map的size>= threshold,那么就要resize()
    public V put(K key, V value) {
        // 这里计算了hash值
        return putVal(hash(key), key, value, false, true);
    }
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node[] tab; Node p; int n, i;
         // 如果map为空,那么通过resize初始化
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        // 如果这个bin为空,那么就把这个键值对放到这个index的位置上,成为这个bin的第一个元素
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        // 如果这个位置已经有其它元素了,那就依次比较,存在就更新,不存在就添加
        else {
            Node e; K k;
            // p用来保存这个位置的第一个元素,如果正好就是这个元素,那么就用e来返回找到的元素,
            // 如果不是就分链表和红黑树继续找,同样也是找到就用e返回,找不到就添加
            // 这里比较的时候先比较了hash值,然后再比较key是否相等,之所以要比较hash值是
            // 因为在定位到这个位置的时候只使用了hash值的低位(n - 1)& hash,这个的分析见get
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            // 红黑树的情况,添加或者返回找到的节点
            else if (p instanceof TreeNode)
                e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
            // 链表的情况,添加或者返回找到的节点
            else {
                for (int binCount = 0; ; ++binCount) {
                    // 到达链表结尾,没有找到,那么插入新节点
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        // 如果链表过长,那么转化为红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    // 在链表中找到了相同key的节点
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            // 如果e不为空,就是找到了节点,那么更新节点的value
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        // 增加修改次数
        ++modCount;
        // 如果大于临界值,扩大
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

get

get与put思路基本一致,只是缺少了添加(更新)这个步骤:

  • key->hashCode()->hash->index
  • 比较节点
    a) 第一个节点
    b) 链表查找
    c) 红黑树查找
    public V get(Object key) {
        Node e;
        // 这里计算hash值
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
    
    final Node getNode(int hash, Object key) {
        Node[] tab; Node first, e; int n; K k;
        // 如果table不为空,且index位置有节点
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
             // 检查第一个节点
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            // 如果第一个节点不是,且后面还有节点
            if ((e = first.next) != null) {
                // 红黑树的情况
                if (first instanceof TreeNode)
                    return ((TreeNode)first).getTreeNode(hash, key);
                // 链表的情况
                do {
                    // 找到就返回
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

hash

计算key的hash值HashMap的关键点,hash函数关系着能否均匀的将键值对散列开,如果散列效果不好,就会发生很多碰撞,影响查找添加的效率,如果计算太过复杂,同样也会影响效率,这里给出jdk1.8的实现

static final int hash(Object key) {
        int h;
        // 保持hashCode的高16位,将低16位与高16位异或
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

resize

resize函数用来申请table数组,所以会在放进第一个键值对初始化和达到threshold进行扩容两种情况下使用。
函数总体也分为上下两个部分,上半部分得到新的table的capacity和threshold值,分配数组,下半部分用于在扩容情况下,将所有的键值对重新计算得到坐标,也就是个再散列的过程。

final Node[] resize() {
        Node[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        // 到这里为止,函数只做了两件事,就是确定新的table的capacity和map的新的threshold
        threshold = newThr;
        // 这里申请新的table
        @SuppressWarnings({"rawtypes","unchecked"})
        Node[] newTab = (Node[])new Node[newCap];
        table = newTab;
        // 从这里开始,对原来所有的键值对重新散列,hash值是存在节点里的,不需要重新计算
        if (oldTab != null) {
            // 按坐标遍历table,每次处理一个bin
            for (int j = 0; j < oldCap; ++j) {
                Node e;
                // 如果这个bin有节点
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    // 如果只有一个节点,那么重新散列,其实也就是由于capacity扩大,计算index时多使用了hash值中的一个高位
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    // 如果这个bin是红黑树结构
                    else if (e instanceof TreeNode)
                        ((TreeNode)e).split(this, newTab, j, oldCap);
                    // 如果这个bin是链表结构
                    else { // preserve order
                        // lo其实也就是原来的index位置
                        Node loHead = null, loTail = null;
                        // hi就是扩容后与lo相对的新的index,坐标相差了原来的capacity
                        Node hiHead = null, hiTail = null;
                        Node next;
                        do {
                            next = e.next;
                            // 这里的到的是hash值中新加入计算的高位,根据这位是0或1将原来的链表拆分成两个链表
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        // 将链表(高位为0)放到原来的index位置
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                         // 将链表(高位为1)放到新的index位置
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

iterator

HashMap中的iterator分为key,value,entry三种,基本实现都是一样的,唯一需要关注的是,由于是按照table来遍历的,所以顺序会看起来是无序的。

参考阅读
how-does-a-hashmap-work-in-java
HashMap的key可以是可变的对象吗?

你可能感兴趣的:(HashMap源码分析)