2020/7/22
不会吧不会真的有人连A都能WA吧,不会吧,不会那个人就是我吧?!
说正事,D题本身并不算太难。
题目:
Let a and b be two arrays of lengths n and m, respectively, with no elements in common. We can define a new array merge(a,b) of length n+m recursively as follows:
If one of the arrays is empty, the result is the other array. That is, merge(∅,b)=b and merge(a,∅)=a. In particular, merge(∅,∅)=∅.
If both arrays are non-empty, and a1
This algorithm has the nice property that if a and b are sorted, then merge(a,b) will also be sorted. For example, it is used as a subroutine in merge-sort. For this problem, however, we will consider the same procedure acting on non-sorted arrays as well. For example, if a=[3,1] and b=[2,4], then merge(a,b)=[2,3,1,4].
A permutation is an array consisting of n distinct integers from 1 to n in arbitrary order. For example, [2,3,1,5,4] is a permutation, but [1,2,2] is not a permutation (2 appears twice in the array) and [1,3,4] is also not a permutation (n=3 but there is 4 in the array).
There is a permutation p of length 2n. Determine if there exist two arrays a and b, each of length n and with no elements in common, so that p=merge(a,b).
大致题意:
定义一个合并对于a,b两个数组,每次比较a和b数组的最前面那个值,取出较小的那个放进序列中,现在题目给出一个2*n的一个排列,问该排列能否为上述2个各有n个数的a,b数组构成。
分析:
对于一个数,其后面比他小的数必须跟他是相同的一个数组之内的,直到遇到一个比他大的数位置。
例如:6 1 3 7 4 5 8 2
分组为:
至于为什么,也不难得出:例如6 1 3,6输出出来的前提是另一个数组的最前面的值是>6的,因此接下来若<6则必然是与6所在的数组是同一个数组,直到出现了一个>6的数为止;
那么通过以上方法就可以将上述的序列分成k个长度为pi的子序列.要求每个子序列内的所有值都必须在同一个数组中.因此这题变成了给你若干个数,问你能不能把它们组成成n+n的形式. 那就是直接上dp即可.
需要注意的是,题解给出了一个优化方案能把原来n^2复杂度化为n根号n,因为原来至多存在n个子序列,每个子序列循环n次.但是我们可以发现2*n个数他至多有根号n种长度的子序列,先把子序列长度计算出来,然后排序.分批处理长度相同的子序列即可.
代码:
这里只给出前者n^2的代码,优化后的看题解的implement即可
#include
#define ll long long
using namespace std;
vector<int> v;
int x[20005];
int main()
{
int t;
cin >> t;
while (t--)
{
int n;
cin >> n;
int i;map<int, int> m;
vector<int> v;
int ma = -1;
int count = 0;
for (i = 0; i < 2*n; i++)
{
cin >> x[i];
if (ma < x[i])
{
if(ma!=-1)v.push_back(count);
count = 0;
ma = x[i];
}
count++;
}
if (count)v.push_back(count);
map<int, int> vis;
map<int, int> a;
vis[0] = 1;
for (int i = 0; i < v.size(); i++)
{
for (int j = n; j >= v[i]; j--)
{
if (!vis[j] && vis[j - v[i]])
{
vis[j] = 1;
}
}
}
cout << (vis[n] ? "YES" : "NO");
cout << endl;
}
return 0;
}