按照紫书上的解释,将一个点拆分成两个点X_i,Y_i,就变成了一个二分图匹配问题,方法和上一题UVA1658优点相似,将入弧和出弧分别连接在两个点X_i,Y_i上,两点间不连接,因为他们实际上是一个点,不用计入cost中,然后添加源点宿点,源点连接在X_i上,Y_i连接到宿点上,求出源点,宿点之间的最小费用最大流,然后将二部图最终的对应点连接起来,就是最小权和的圈
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
const int maxn=205,Inf=0x3f3f3f3f;
struct Edge{
int from,to,cap,flow,cost;
Edge(int from,int to,int cap,int flow,int cost): from(from),to(to),cap(cap),flow(flow),cost(cost){}
};
struct MCMF{
int n,m;
vector<Edge> edges;
vector<int> G[maxn];
int a[maxn];
int p[maxn];
int d[maxn];
int inq[maxn];
void init(int n){
this->n=n;
for(int i=0;i<n;++i) G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int cap,int cost){
edges.push_back(Edge(from,to,cap,0,cost));
edges.push_back(Edge(to,from,0,0,-cost));
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BellmanFord(int s,int t,int &flow,long long &cost){
for(int i=0;i<n;++i) d[i]=Inf;
memset(inq,0,sizeof(inq));
d[s]=0; inq[s]=1; a[s]=Inf; p[s]=0;
queue<int> Q;
Q.push(s);
while(!Q.empty()){
int x=Q.front();
Q.pop();
inq[x]=0;
for(int i=0;i<G[x].size();++i){
Edge &e=edges[G[x][i]];
if(d[e.to]>d[x]+e.cost && e.cap>e.flow){
d[e.to]=d[x]+e.cost;
a[e.to]=min(a[x],e.cap-e.flow);
p[e.to]=G[x][i];
if(!inq[e.to]){
inq[e.to]=1;
Q.push(e.to);
}
}
}
}
if(d[t]==Inf) return false;
flow+=a[t];
cost+=(long long)a[t]*d[t];
for(int u=t;u!=s;u=edges[p[u]].from){
edges[p[u]].flow+=a[t];
edges[p[u]^1].flow-=a[t];
}
return true;
}
int MincostMaxflow(int s,int t,long long &cost){
int flow=0;
cost=0;
while(BellmanFord(s,t,flow,cost));
return flow;
}
};
MCMF mcmf;
int n,a,b;
int main(void){
while(cin>>n && n){
mcmf.init(2*n+2);
for(int i=1;i<=n;++i){
mcmf.AddEdge(0,i,1,0); //源点到X
mcmf.AddEdge(i+n,(n<<1)+1,1,0); //Y到宿点
}
for(int i=1;i<=n;++i){
while(scanf("%d",&a)==1 && a){
scanf("%d",&b);
mcmf.AddEdge(i,a+n,1,b);
}
}
long long cost=0;
int flow=mcmf.MincostMaxflow(0,2*n+1,cost);
if(flow==n) printf("%lld\n",cost);
else printf("N\n");
}
return 0;
}