使用zeppelin分析电子商务消费行为

项目文件获取,提取码: m3d4

文章目录

  • 一.任务描述
  • 二.问题分析
    • 问题分析1:Customer表
    • 问题分析2:Transaction表
    • 问题分析3:Store表
    • 问题分析1:Review表
  • 三.连接zeppelin
    • **使用刚才创建的模板**
      • 1.从windows上传到linux 的/tmp/data目录下
      • 2.Understand the Data
      • 3. Upload the file to HDFS
      • 4.建表查表
      • 5.数据清洗
      • 6.Customer分析
        • 6.1找出顾客最常用的信用卡
        • 6.2找出客户资料中排名前五的职位名称
        • 6.3在美国女性最常用的信用卡
        • 6.4按性别和国家进行客户统计
      • 7.Transaction分析
        • 7.1计算每月总收入
        • 7.2计算每个季度的总收入
        • 7.3按年计算总收入
        • 7.4按工作日计算总收入
        • 7.5/7.6按时间段计算总收入(需要清理数据)
        • 7.7按工作日计算平均消费
        • 7.8计算年、月、日的交易总数
        • 7.9找出交易量最大的10个客户
        • 7.10找出消费最多的前10位顾客
        • 7.11统计该期间交易数量最少的用户
        • 7.12计算每个季度的独立客户总数
        • 7.13计算每周的独立客户总数
        • 7.14计算整个活动客户平均花费的最大值
        • 7.15统计每月花费最多的客户
        • 7.16统计每月访问次数最多的客户
        • 7.17按总价找出最受欢迎的5种产品
        • 7.18根据购买频率找出最畅销的5种产品
        • 7.19根据客户数量找出最受欢迎的5种产品
      • 8.Store分析
        • 8.1按客流量找出最受欢迎的商店
        • 8.2根据顾客消费价格找出最受欢迎的商店
        • 8.3根据顾客交易情况找出最受欢迎的商店
        • 8.4根据商店和唯一的顾客id获取最受欢迎的产品
        • 8.5获取每个商店的员工与顾客比
        • 8.6按年和月计算每家店的收入
        • 8.7按店铺制作总收益饼图
        • 8.8找出每个商店最繁忙的时间段
        • 8.9找出每家店的忠实顾客
        • 8.10根据每位员工的最高收入找出明星商店
      • 9.Review分析
        • 9.1在ext_store_review中找出存在冲突的交易映射关系
        • 9.2了解客户评价的覆盖率
        • 9.3根据评分了解客户的分布情况
        • 9.4根据交易了解客户的分布情况
        • 9.5客户给出的最佳评价是否总是同一家门店

一.任务描述

需求概述

  • 对某零售企业最近1年门店收集的数据进行数据分析
  • 潜在客户画像
  • 用户消费统计
  • 门店的资源利用率
  • 消费的特征人群定位
  • 数据的可视化展现

二.问题分析

问题分析1:Customer表

customer_details details
customer_id Int, 1 - 500
first_name string
last_name string
email string, such as [email protected]
gender string, Male or female
address string
country string
language string
job string, job title/position
credit_type string, credit card type, such as visa
credit_no string, credit card number

问题:language字段数据存在错误

问题分析2:Transaction表

transaction_details details
transaction_id Int, 1 - 1000
customer_id Int, 1 - 500
store_id Int, 1 - 5
price decimal, such as 5.08
product string, things bought
date string, when to purchase
time string, what time to purchase

问题:表中transaction_id有重复,但数据有效,需要修复数据

问题分析3:Store表

transaction_details details
transaction_id Int, 1 - 1000
customer_id Int, 1 - 500
store_id Int, 1 - 5
price decimal, such as 5.08
product string, things bought
date string, when to purchase
time string, what time to purchase

问题分析1:Review表

store_review details
stransaction_id Int, 1 - 8000
store_id Int, 1 - 5
review_store Int, 1 - 5

问题:表中有无效的score数据表中有将transaction_id映射到错误的store_id

三.连接zeppelin

导入电子商务消费行为分析数据及模板
使用zeppelin分析电子商务消费行为_第1张图片
使用zeppelin分析电子商务消费行为_第2张图片

使用刚才创建的模板

1.从windows上传到linux 的/tmp/data目录下

2.Understand the Data

%sh
## /tmp/data/
-- 查看行数
cd /tmp/data/
wc -l customer_details.csv
wc -l store_details.csv
wc -l transaction_details.csv
wc -l store_review.csv
-- 查看头两行
head -2 customer_details.csv
head -2 transaction_details.csv
head -2 store_details.csv
head -2 store_review.csv

3. Upload the file to HDFS

%sh
cd /tmp/data/
hdfs dfs -rm -r -f /tmp/shopping
hdfs dfs -mkdir -p /tmp/shopping/data/customer
hdfs dfs -mkdir -p /tmp/shopping/data/store
hdfs dfs -mkdir -p /tmp/shopping/data/review
hdfs dfs -mkdir -p /tmp/shopping/data/transaction
hdfs dfs -chmod -R 777 /tmp
-- 上传数据到hdfs
hdfs dfs -put customer_details.csv /tmp/shopping/data/customer/
hdfs dfs -put transaction_details.csv /tmp/shopping/data/transaction/
hdfs dfs -put store_details.csv /tmp/shopping/data/store/
hdfs dfs -put store_review.csv /tmp/shopping/data/review/

4.建表查表

4.1 Clear all tables if exists

create database if not exists shopping
use shopping
-- 创建顾客表
create external table if not exists ext_customer_details (
customer_id string, --we can use int as well
first_name string,
last_name string,
email string,
gender string,
address string,
country string,
language string,
job string,
credit_type string,
credit_no string
)
row format serde 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
location '/tmp/shopping/data/customer' --this must tblproperties 
tblproperties ("skip.header.line.count"="1")
-- 创建交易流水表
create external table if not exists ext_transaction_details (
transaction_id string,
customer_id string,
store_id string,
price decimal(8,2),
product string,
purchase_date string,
purchase_time string
)
row format serde 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
location '/tmp/shopping/data/transaction' --this must tblproperties 
tblproperties ("skip.header.line.count"="1")
-- 创建商店详情表
create external table if not exists ext_store_details (
store_id string,
store_name string,
employee_number int
)
row format serde 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
location '/tmp/shopping/data/store' --this must tblproperties 
tblproperties ("skip.header.line.count"="1")
-- 创建评价表
create external table if not exists ext_store_review (
transaction_id string,
store_id string,
review_score int
)
row format serde 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
location '/tmp/shopping/data/review' --this must tblproperties 
tblproperties ("skip.header.line.count"="1")

4.2 Verify all Tables are Created

%hive
--select * from ext_customer_details limit 20
--select * from ext_transaction_details limit 20
--select * from ext_store_details limit 20
select * from ext_store_review limit 20

5.数据清洗

解决以下有问题的数据

  • 对transaction_details中的重复数据生成新ID
  • 过滤掉store_review中没有评分的数据
  • 可以把清洗好的数据放到另一个表或者用View表示
  • 找出PII (personal information identification) 或PCI (personal confidential information) 数据进行加密或hash
  • 重新组织transaction数据按照日期YYYY-MM做分区

5.1 Clean and Mask customer_details

%hive
-- 敏感信息加密
-- drop view vm_customer_details
create view if not exists vm_customer_details as
select
customer_id ,
first_name ,
unbase64(last_name) lastname,
unbase64(email) email,
gender ,
unbase64(address) address,
country ,
language,
job ,
credit_type ,
unbase64(credit_no) credit_no
from 
ext_customer_details

5.2 Clean transaction_details into partition table

%hive
-- 创建流水详情表
create table if not exists transaction_details
(
transaction_id string,
customer_id string,
store_id string,
price decimal(8,2),
product string,
purchase_date date,
purchase_time string
)
partitioned by(purchase_month string)
-- select transaction_id,count(1) from ext_transaction_details group by transaction_id having count(1)>1
-- select * from ext_transaction_details where transaction_id=8001
set hive.exec.dynamic.partition.mode=nonstrict -- 开启动态分区
-- 重写数据
with base as (
select
transaction_id,
customer_id ,
store_id ,
price ,
product,
purchase_date,
purchase_time,
from_unixtime(unix_timestamp(purchase_date,'yyyy-MM-dd'),'yyyy-MM') as purchase_month,
row_number() over (partition by transaction_id order by store_id) as rn
from ext_transaction_details
)
insert overwrite table transaction_details partition(purchase_month)
select
if(rn=1,transaction_id,concat_ws('-',transaction_id,'_fix')) ,
customer_id ,
store_id ,
price ,
product,
purchase_date ,
purchase_time,
purchase_month
from base
-- 查看修复信息
select * from transaction_details where transaction_id like '%fix%'

5.3 Clean store_review table

create view if not exists vw_store_review as
select
transaction_id,
review_score
from  ext_store_review where review_score <> ''
show tables

最终会出现如下7个表:
使用zeppelin分析电子商务消费行为_第3张图片

6.Customer分析

6.1找出顾客最常用的信用卡

%hive
select credit_type,count(distinct credit_no) as credit_cnt
from
vm_customer_details
group by credit_type
order by credit_cnt desc

使用zeppelin分析电子商务消费行为_第4张图片

6.2找出客户资料中排名前五的职位名称

%hive
select job ,count(1) as pn
from vm_customer_details
group by job
order by pn desc
limit 5

使用zeppelin分析电子商务消费行为_第5张图片

6.3在美国女性最常用的信用卡

%hive
select  credit_type,count(1) as ct
from vm_customer_details
where country='United States' and gender =='Female'
group by credit_type
order by ct desc limit 5

使用zeppelin分析电子商务消费行为_第6张图片

6.4按性别和国家进行客户统计

%hive
select country,gender, count(1) cnt
from vm_customer_details
group by country,gender

使用zeppelin分析电子商务消费行为_第7张图片

7.Transaction分析

7.1计算每月总收入

%hive
select sum(price) as revenue_mon,purchase_month
from transaction_details
group by purchase_month

使用zeppelin分析电子商务消费行为_第8张图片

7.2计算每个季度的总收入

%hive
with
bash as
(
select price, ( concat(year(purchase_date),'-',ceil(month(purchase_date)/3)))as year_quarter
from transaction_details
)
select sum(price) revenue_quarter
from bash

使用zeppelin分析电子商务消费行为_第9张图片

7.3按年计算总收入

select year(purchase_date),sum(price)
from transaction_details
group by year(purchase_date)

使用zeppelin分析电子商务消费行为_第10张图片

7.4按工作日计算总收入

%hive
select dayofweek(cast(purchase_date as string))-1 work_date,sum(price)
from transaction_details
where dayofweek(cast(purchase_date as string)) between 2 and 6
group by dayofweek(cast(purchase_date as string))

使用zeppelin分析电子商务消费行为_第11张图片

7.5/7.6按时间段计算总收入(需要清理数据)

-- 使用正则表达式清理数据然后使用case when 分组查询
with
t1 as(
select *, if(instr(purchase_time,'PM')>0,
				if(cast(regexp_extract(purchase_time,'([0-9]{1,2}):([0-9]{2}\\w*)',1)as int)+12>=24,
					0,
					cast(regexp_extract(purchase_time,'([0-9]{1,2}):([0-9]{2}\\w*)',1)as int)+12),
				cast(regexp_extract(purchase_time,'([0-9]{1,2}):([0-9]{2}\\w*)',1)as int)) as timeTrans
from transaction_details), t2 as(
select t1.*,case when t1.timeTrans<=8 and t1.timeTrans>5 then 'early morning'
				 when t1.timeTrans<=11 and t1.timeTrans>8 then 'morning'
				 when t1.timeTrans<=13 and t1.timeTrans>11 then 'noon'
				 when t1.timeTrans<=18 and t1.timeTrans>13 then 'afternoon'
				 when t1.timeTrans<=22 and t1.timeTrans>18 then 'evening'
				 else 'night'
			end as timeSplit
from t1)
select t2.timeSplit,sum(price)
from t2 
group by t2.timeSplit

使用zeppelin分析电子商务消费行为_第12张图片

7.7按工作日计算平均消费

%hive
select dayofweek(cast(purchase_date as string))-1 work_date,avg(price)
from transaction_details
where dayofweek(cast(purchase_date as string)) between 2 and 6
group by dayofweek(cast(purchase_date as string))

使用zeppelin分析电子商务消费行为_第13张图片

7.8计算年、月、日的交易总数

-- 按天计数
select purchase_date ,count(1)
from transaction_details
group by purchase_date 
-- 按年计数
select year(purchase_date),count(1)
from transaction_details
group by year(purchase_date)
-- 按月计数
select concat(year(purchase_date),'-',month(purchase_date)),count(1)
from transaction_details
group by year(purchase_date),month(purchase_date)
-- 合计
select purchase_date,
	count(1) over(partition by year(purchase_date)),
	count(1) over(partition by year(purchase_date),month(purchase_date)),
	count(1) over(partition by year(purchase_date),month(purchase_date),day(purchase_date))
from transaction_details

使用zeppelin分析电子商务消费行为_第14张图片

7.9找出交易量最大的10个客户

select customer_id,count(1) c
from transaction_details
group by customer_id
order by c desc
limit 10

使用zeppelin分析电子商务消费行为_第15张图片

7.10找出消费最多的前10位顾客

select customer_id ,sum(price) s
from transaction_details
group by customer_id
order by s desc
limit 10

使用zeppelin分析电子商务消费行为_第16张图片

7.11统计该期间交易数量最少的用户

select customer_id ,count(1) c
from transaction_details
group by customer_id
order by c asc
limit 1

使用zeppelin分析电子商务消费行为_第17张图片

7.12计算每个季度的独立客户总数

select concat(year(purchase_date),'年',ceil(month(purchase_date)/3),'季度'),count(distinct customer_id)
from transaction_details
group by year(purchase_date),ceil(month(purchase_date)/3)

使用zeppelin分析电子商务消费行为_第18张图片

7.13计算每周的独立客户总数

select concat(year(purchase_date),'年第',weekofyear(purchase_date),'周'),count(distinct customer_id)
from transaction_details
group by year(purchase_date),weekofyear(purchase_date)

使用zeppelin分析电子商务消费行为_第19张图片

7.14计算整个活动客户平均花费的最大值

select a.customer_id,max(a.av)
from
(
select customer_id,avg(price) av
from transaction_details
group by customer_id) a
group by a.customer_id;

使用zeppelin分析电子商务消费行为_第20张图片

7.15统计每月花费最多的客户

select b.m,b.id,b.s
from(
select a.m,a.id,a.s ,row_number() over(partition by  a.m order by a.s desc) as win1
from(
select concat(year(purchase_date),'-',month(purchase_date)) m,customer_id id,sum(price) s
from transaction_details
group by year(purchase_date),month(purchase_date),customer_id)a) b 
where b.win1=1

使用zeppelin分析电子商务消费行为_第21张图片

7.16统计每月访问次数最多的客户

select b.m,b.id,b.c
from(
select a.m,a.id,a.c,row_number() over(partition by a.m order by a.c desc) as win1 
from(
select concat(year(purchase_date),'-',month(purchase_date)) m,customer_id id, count(1) c
from transaction_details
group by year(purchase_date),month(purchase_date),customer_id) a) b 
where b.win1=1

使用zeppelin分析电子商务消费行为_第22张图片

7.17按总价找出最受欢迎的5种产品

select product,sum(price) s 
from transaction_details
group by product
order by s desc
limit 5

使用zeppelin分析电子商务消费行为_第23张图片

7.18根据购买频率找出最畅销的5种产品

select product,count(1) c 
from transaction_details
group by product
order by c desc
limit 5

使用zeppelin分析电子商务消费行为_第24张图片

7.19根据客户数量找出最受欢迎的5种产品

select product,count(distinct customer_id) c 
from transaction_details
group by product
order by c
limit 5

8.Store分析

8.1按客流量找出最受欢迎的商店

select store_id,count(1) c 
from transaction_details
group by store_id
order by c desc
limit 1

使用zeppelin分析电子商务消费行为_第25张图片

8.2根据顾客消费价格找出最受欢迎的商店

select store_id,sum(price) s 
from transaction_details
group by store_id 
order by s desc  
limit 1

使用zeppelin分析电子商务消费行为_第26张图片

8.3根据顾客交易情况找出最受欢迎的商店

select store_id,count(1) c ,sum(price) s 
from transaction_details
group by store_id 
order by c desc ,s desc 
limit 1

8.4根据商店和唯一的顾客id获取最受欢迎的产品

select b.store_id,b.product
from (
select a.store_id,a.product,a.c ,row_number() over(partition by store_id order by a.c desc )as win1 
from(
select store_id,product,count(distinct customer_id) c 
from transaction_details
group by store_id,product) a )b 
where b.win1 =1

使用zeppelin分析电子商务消费行为_第27张图片

8.5获取每个商店的员工与顾客比

select a.store_id,concat_ws(':',cast(ceil(round(s.employee_number/a.c*100))as string),'100')
from(
select t.store_id,count(distinct customer_id) c
from transaction_details t 
group by t.store_id)a join ext_store_details s 
on a.store_id=s.store_id

使用zeppelin分析电子商务消费行为_第28张图片

8.6按年和月计算每家店的收入

-- 按月
select  store_id,year(purchase_date),month(purchase_date),sum(price)
from transaction_details
group by store_id,year(purchase_date),month(purchase_date)
-- 按年 
select  store_id,year(purchase_date),sum(price)
from transaction_details
group by store_id,year(purchase_date)
-- 合计到一张表
select distinct *
from(
select store_id,year(purchase_date),sum(price) over(partition by year(purchase_date)),month(purchase_date),sum(price) over(partition by year(purchase_date),month(purchase_date))
from transaction_details)a

使用zeppelin分析电子商务消费行为_第29张图片

8.7按店铺制作总收益饼图

select store_id,sum(price)
from transaction_details
group by store_id

使用zeppelin分析电子商务消费行为_第30张图片

8.8找出每个商店最繁忙的时间段

with
t1 as(
select *, if(instr(purchase_time,'PM')>0,
				if(cast(regexp_extract(purchase_time,'([0-9]{1,2}):([0-9]{2}\\w*)',1)as int)+12>=24,
					0,
					cast(regexp_extract(purchase_time,'([0-9]{1,2}):([0-9]{2}\\w*)',1)as int)+12),
				cast(regexp_extract(purchase_time,'([0-9]{1,2}):([0-9]{2}\\w*)',1)as int)) as timeTrans
from transaction_details), t2 as(
select t1.*,case when t1.timeTrans<=8 and t1.timeTrans>5 then 'early morning'
				 when t1.timeTrans<=11 and t1.timeTrans>8 then 'morning'
				 when t1.timeTrans<=13 and t1.timeTrans>11 then 'noon'
				 when t1.timeTrans<=18 and t1.timeTrans>13 then 'afternoon'
				 when t1.timeTrans<=22 and t1.timeTrans>18 then 'evening'
				 else 'night'
			end as timeSplit
from t1),
t3 as(
select t2.store_id,t2.timeSplit,count(1) c 
from t2 
group by t2.store_id,t2.timeSplit),
t4 as(
select t3.store_id,t3.timeSplit,row_number() over(partition by store_id order by t3.timeSplit desc)as win1
from t3 )
select t4.store_id,t4.timeSplit
from t4
where t4.win1=1

使用zeppelin分析电子商务消费行为_第31张图片

8.9找出每家店的忠实顾客

-- 购买超过6次
select a.*
from(
select store_id,customer_id,count(1) c
from transaction_details
group by store_id,customer_id)a 
where a.c>6

使用zeppelin分析电子商务消费行为_第32张图片

8.10根据每位员工的最高收入找出明星商店

-- 求总收入与雇员比值的最大值
with
t1 as (
select  store_id,sum(price) s 
from transaction_details 
group by store_id)
select t1.store_id,t1.s/s.employee_number ss
from t1 join ext_store_details s  on s.store_id= t1.store_id
order by ss desc 
limit 1

使用zeppelin分析电子商务消费行为_第33张图片

9.Review分析

9.1在ext_store_review中找出存在冲突的交易映射关系

select transaction_id
from vw_store_review
group by transaction_id
having count(1)>1

使用zeppelin分析电子商务消费行为_第34张图片

9.2了解客户评价的覆盖率

-- 求各个店共有多少顾客评价
with 
t1 as(
select t2.store_id,t1.transaction_id,t2.customer_id
from vw_store_review t1 join transaction_details t2 on t1.transaction_id=t2.transaction_id)
select t1.store_id,count(distinct t1.customer_id)
from t1 
group by t1.store_id

使用zeppelin分析电子商务消费行为_第35张图片

9.3根据评分了解客户的分布情况

-- 求每家店每个评分有多少个客户给的
with
t1 as(
select  t2.store_id ,t1.review_score,t2.customer_id
from vw_store_review t1 join  transaction_details t2 on t1.transaction_id=t2.transaction_id)
select t1.store_id,t1.review_score,count(distinct customer_id)
from t1
group by t1.store_id,t1.review_score

使用zeppelin分析电子商务消费行为_第36张图片

9.4根据交易了解客户的分布情况

-- 求每家店每个客户的订单数
select store_id,customer_id,count(1)
from transaction_details
group by store_id,customer_id

使用zeppelin分析电子商务消费行为_第37张图片

9.5客户给出的最佳评价是否总是同一家门店

-- 每位顾客对每家店的评分只取最大值,然后筛选每家店评分为5的数量,最大就是最优店
with
t1 as(
select r.store_id,t.customer_id,max(r.review_score) m 
from ext_store_review r  join transaction_details t 
on r.transaction_id = t.transaction_id 
group by r.store_id,t.customer_id),
t2 as (select * from t1 where t1.m=5)
select store_id,count(t2.m) c  from t2 
group by store_id
order by c desc 
limit 1

使用zeppelin分析电子商务消费行为_第38张图片

你可能感兴趣的:(Hadoop,hive,hive练习,hive项目,zeppelin,消费行为分析)