写在前面
在互联网应用中,高并发系统会面临一个重大的挑战,那就是大量流高并发访问,比如:天猫的双十一、京东618、秒杀、抢购促销等,这些都是典型的大流量高并发场景。关于秒杀,小伙伴们可以参见我的另一篇文章《【高并发】高并发秒杀系统架构解密,不是所有的秒杀都是秒杀!》
关于【冰河技术】微信公众号,解锁更多【高并发】专题文章。
注意:由于原文篇幅比较长,所以被拆分为:理论、算法、实战(HTTP接口实战+分布式限流实战)三大部分。理论篇参见《【高并发】如何实现亿级流量下的分布式限流?这些理论你必须掌握!!》
计数器
计数器法
限流算法中最简单粗暴的一种算法,例如,某一个接口1分钟内的请求不超过60次,我们可以在开始时设置一个计数器,每次请求时,这个计数器的值加1,如果这个这个计数器的值大于60并且与第一次请求的时间间隔在1分钟之内,那么说明请求过多;如果该请求与第一次请求的时间间隔大于1分钟,并且该计数器的值还在限流范围内,那么重置该计数器。
使用计数器还可以用来限制一定时间内的总并发数,比如数据库连接池、线程池、秒杀的并发数;计数器限流只要一定时间内的总请求数超过设定的阀值则进行限流,是一种简单粗暴的总数量限流,而不是平均速率限流。
这个方法有一个致命问题:临界问题——当遇到恶意请求,在0:59时,瞬间请求100次,并且在1:00请求100次,那么这个用户在1秒内请求了200次,用户可以在重置节点突发请求,而瞬间超过我们设置的速率限制,用户可能通过算法漏洞击垮我们的应用。
这个问题我们可以使用滑动窗口解决。
滑动窗口
在上图中,整个红色矩形框是一个时间窗口,在我们的例子中,一个时间窗口就是1分钟,然后我们将时间窗口进行划分,如上图我们把滑动窗口划分为6格,所以每一格代表10秒,每超过10秒,我们的时间窗口就会向右滑动一格,每一格都有自己独立的计数器,例如:一个请求在0:35到达, 那么0:30到0:39的计数器会+1,那么滑动窗口是怎么解决临界点的问题呢?如上图,0:59到达的100个请求会在灰色区域格子中,而1:00到达的请求会在红色格子中,窗口会向右滑动一格,那么此时间窗口内的总请求数共200个,超过了限定的100,所以此时能够检测出来触发了限流。回头看看计数器算法,会发现,其实计数器算法就是窗口滑动算法,只不过计数器算法没有对时间窗口进行划分,所以是一格。
由此可见,当滑动窗口的格子划分越多,限流的统计就会越精确。
漏桶算法
算法的思路就是水(请求)先进入到漏桶里面,漏桶以恒定的速度流出,当水流的速度过大就会直接溢出,可以看出漏桶算法能强行限制数据的传输速率。如下图所示。
漏桶算法不支持突发流量。
令牌桶算法
从上图中可以看出,令牌算法有点复杂,桶里存放着令牌token。桶一开始是空的,token以固定的速率r往桶里面填充,直到达到桶的容量,多余的token会被丢弃。每当一个请求过来时,就会尝试着移除一个token,如果没有token,请求无法通过。
令牌桶算法支持突发流量。
令牌桶算法实现
Guava框架提供了令牌桶算法的实现,可直接使用这个框架的RateLimiter类创建一个令牌桶限流器,比如:每秒放置的令牌桶的数量为5,那么RateLimiter对象可以保证1秒内不会放入超过5个令牌,并且以固定速率进行放置令牌,达到平滑输出的效果。
平滑流量示例
这里,我写了一个使用Guava框架实现令牌桶算法的示例,如下所示。
package io.binghe.limit.guava;
import com.google.common.util.concurrent.RateLimiter;
/**
* @author binghe
* @version 1.0.0
* @description 令牌桶算法
*/
public class TokenBucketLimiter {
public static void main(String[] args){
//每秒钟生成5个令牌
RateLimiter limiter = RateLimiter.create(5);
//返回值表示从令牌桶中获取一个令牌所花费的时间,单位是秒
System.out.println(limiter.acquire(1));
System.out.println(limiter.acquire(1));
System.out.println(limiter.acquire(1));
System.out.println(limiter.acquire(1));
System.out.println(limiter.acquire(1));
System.out.println(limiter.acquire(1));
System.out.println(limiter.acquire(1));
System.out.println(limiter.acquire(1));
System.out.println(limiter.acquire(1));
System.out.println(limiter.acquire(1));
}
}
代码的实现非常简单,就是使用Guava框架的RateLimiter类生成了一个每秒向桶中放入5个令牌的对象,然后不断从桶中获取令牌。我们先来运行下这段代码,输出的结果信息如下所示。
0.0
0.197294
0.191278
0.19997
0.199305
0.200472
0.200184
0.199417
0.200111
0.199759
从输出结果可以看出:第一次从桶中获取令牌时,返回的时间为0.0,也就是没耗费时间。之后每次从桶中获取令牌时,都会耗费一定的时间,这是为什么呢?按理说,向桶中放入了5个令牌后,再从桶中获取令牌也应该和第一次一样并不会花费时间啊!
因为在Guava的实现是这样的:我们使用RateLimiter.create(5)
创建令牌桶对象时,表示每秒新增5个令牌,1秒等于1000毫秒,也就是每隔200毫秒向桶中放入一个令牌。
当我们运行程序时,程序运行到RateLimiter limiter = RateLimiter.create(5);
时,就会向桶中放入一个令牌,当程序运行到第一个System.out.println(limiter.acquire(1));
时,由于桶中已经存在一个令牌,直接获取这个令牌,并没有花费时间。然而程序继续向下执行时,由于程序会每隔200毫秒向桶中放入一个令牌,所以,获取令牌时,花费的时间几乎都是200毫秒左右。
突发流量示例
我们再来看一个突发流量的示例,代码示例如下所示。
package io.binghe.limit.guava;
import com.google.common.util.concurrent.RateLimiter;
/**
* @author binghe
* @version 1.0.0
* @description 令牌桶算法
*/
public class TokenBucketLimiter {
public static void main(String[] args){
//每秒钟生成5个令牌
RateLimiter limiter = RateLimiter.create(5);
//返回值表示从令牌桶中获取一个令牌所花费的时间,单位是秒
System.out.println(limiter.acquire(50));
System.out.println(limiter.acquire(5));
System.out.println(limiter.acquire(5));
System.out.println(limiter.acquire(5));
System.out.println(limiter.acquire(5));
}
}
上述代码表示的含义为:每秒向桶中放入5个令牌,第一次从桶中获取50个令牌,也就是我们说的突发流量,后续每次从桶中获取5个令牌。接下来,我们运行上述代码看下效果。
0.0
9.998409
0.99109
1.000148
0.999752
运行代码时,会发现当命令行打印出0.0后,会等很久才会打印出后面的输出结果。
程序每秒钟向桶中放入5个令牌,当程序运行到 RateLimiter limiter = RateLimiter.create(5);
时,就会向桶中放入令牌。当运行到 System.out.println(limiter.acquire(50));
时,发现很快就会获取到令牌,花费了0.0秒。接下来,运行到第一个System.out.println(limiter.acquire(5));
时,花费了9.998409秒。小伙们可以思考下,为什么这里会花费10秒中的时间呢?
这是因为我们使用RateLimiter limiter = RateLimiter.create(5);
代码向桶中放入令牌时,一秒钟放入5个,而System.out.println(limiter.acquire(50));
需要获取50个令牌,也就是获取50个令牌需要花费10秒钟时间,这是因为程序向桶中放入50个令牌需要10秒钟。程序第一次从桶中获取令牌时,很快就获取到了。而第二次获取令牌时,花费了将近10秒的时间。
Guava框架支持突发流量,但是在突发流量之后再次请求时,会被限速,也就是说:在突发流量之后,再次请求时,会弥补处理突发请求所花费的时间。所以,我们的突发示例程序中,在一次从桶中获取50个令牌后,再次从桶中获取令牌,则会花费10秒左右的时间。
Guava令牌桶算法的特点
- RateLimiter使用令牌桶算法,会进行令牌的累积,如果获取令牌的频率比较低,则不会导致等待,直接获取令牌。
- RateLimiter由于会累积令牌,所以可以应对突发流量。也就是说如果同时请求5个令牌,由于此时令牌桶中有累积的令牌,能够快速响应请求。
- RateLimiter在没有足够的令牌发放时,采用的是滞后的方式进行处理,也就是前一个请求获取令牌所需要等待的时间由下一次请求来承受和弥补,也就是代替前一个请求进行等待。(这里,小伙伴们要好好理解下)
重磅福利
关注「 冰河技术 」微信公众号,后台回复 “设计模式” 关键字领取《深入浅出Java 23种设计模式》PDF文档。回复“Java8”关键字领取《Java8新特性教程》PDF文档。两本PDF均是由冰河原创并整理的超硬核教程,面试必备!!
好了,今天就聊到这儿吧!别忘了点个赞,给个在看和转发,让更多的人看到,一起学习,一起进步!!
写在最后
如果你觉得冰河写的还不错,请微信搜索并关注「 冰河技术 」微信公众号,跟冰河学习高并发、分布式、微服务、大数据、互联网和云原生技术,「 冰河技术 」微信公众号更新了大量技术专题,每一篇技术文章干货满满!不少读者已经通过阅读「 冰河技术 」微信公众号文章,吊打面试官,成功跳槽到大厂;也有不少读者实现了技术上的飞跃,成为公司的技术骨干!如果你也想像他们一样提升自己的能力,实现技术能力的飞跃,进大厂,升职加薪,那就关注「 冰河技术 」微信公众号吧,每天更新超硬核技术干货,让你对如何提升技术能力不再迷茫!