阻塞队列

基本概念

阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。这两个附加的操作支持阻塞的插入和移除方法。
1)支持阻塞的插入方法:意思是当队列满时,队列会阻塞插入元素的线程,直到队列不满。

2)支持阻塞的移除方法:意思是在队列为空时,获取元素的线程会等待队列变为非空

阻塞队列_第1张图片
阻塞队列一共有7种,我们着重讲一下
ArrayBlockingQueue
LinkedBlockingQueue
DelayQueue
SynchronousQueue
这四种阻塞队列

ArrayBlockingQueue

基于数组实现有界的阻塞队列(循环数组)

类的继承

public class ArrayBlockingQueue<E> extends AbstractQueue<E>
        implements BlockingQueue<E>, java.io.Serializable

主要成员变量

 private static final long serialVersionUID = -817911632652898426L;

    final Object[] items; //底层存储元素的数组

    int takeIndex; //进行取操作时的下标

    int putIndex;//进行放操作时的下标
    
    int count;//队列中元素的数量
    
    final ReentrantLock lock;//阻塞时用的锁

	private final Condition notEmpty;//满时的condition队列

	private final Condition notFull;//空时的condition队列

构造器

参数有容量和全局锁是否是公平锁

 public ArrayBlockingQueue(int capacity, boolean fair) {
        if (capacity <= 0)
            throw new IllegalArgumentException();
        this.items = new Object[capacity];
        lock = new ReentrantLock(fair);
        notEmpty = lock.newCondition();
        notFull =  lock.newCondition();
    }

不用确定是否是公平锁,默认是非公平锁

public ArrayBlockingQueue(int capacity) {
        this(capacity, false);
    }

在第一个构造器的前提下,将整个集合移入阻塞队列

public ArrayBlockingQueue(int capacity, boolean fair,
                              Collection<? extends E> c) {
        this(capacity, fair);

        final ReentrantLock lock = this.lock;
        lock.lock(); // Lock only for visibility, not mutual exclusion
        try {
            int i = 0;
            try {
                for (E e : c) {
                    checkNotNull(e);
                    items[i++] = e;
                }
            } catch (ArrayIndexOutOfBoundsException ex) {
                throw new IllegalArgumentException();
            }
            count = i;
            putIndex = (i == capacity) ? 0 : i;
        } finally {
            lock.unlock();
        }
    }

主要方法

put()

public void put(E e) throws InterruptedException {
        checkNotNull(e);
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            while (count == items.length)
                notFull.await();
            enqueue(e);
        } finally {
            lock.unlock();
        }
    }

1.首先判断添加的是否非空,是空的会抛出异常。
2.给put方法上锁
3.当集合元素数量和集合的长度相等时,调用put方法的线程将会被放入notFull队列上等待。
4.如果不相等,则enqueue(),也就是让e进入队列。
我们再看看enqueue()方法(入队方法)

 private void enqueue(E x) {
        // assert lock.getHoldCount() == 1;
        // assert items[putIndex] == null;
        final Object[] items = this.items;
        items[putIndex] = x;
        if (++putIndex == items.length)
            putIndex = 0;
        count++;
        notEmpty.signal();
    }

其实就是让该元素入队,并且唤醒因为集合空而等待的线程。

take()方法同理。

LinkedBlockingQueue

LinkedBlockingQueue底层是基于链表实现的,所以其基本成员变量和LinkedList差不多。

类的继承关系

public class LinkedBlockingQueue<E> extends AbstractQueue<E>
        implements BlockingQueue<E>, java.io.Serializable 

构造器

无参构造器,默认容量为最大容量

public LinkedBlockingQueue() {
        this(Integer.MAX_VALUE);
    }

手动设定容量

public LinkedBlockingQueue(int capacity) {
        if (capacity <= 0) throw new IllegalArgumentException();
        this.capacity = capacity;
        last = head = new Node<E>(null);
    }

将整个集合挪入队列中,默认容量同样是最大容量。

public LinkedBlockingQueue(Collection<? extends E> c) {
        this(Integer.MAX_VALUE);
        final ReentrantLock putLock = this.putLock;
        putLock.lock(); // Never contended, but necessary for visibility
        try {
            int n = 0;
            for (E e : c) {
                if (e == null)
                    throw new NullPointerException();
                if (n == capacity)
                    throw new IllegalStateException("Queue full");
                enqueue(new Node<E>(e));
                ++n;
            }
            count.set(n);
        } finally {
            putLock.unlock();
        }
    }

主要成员变量

链表就一定会有节点
内部节点类
和ArrayBlockingQueue不同的是,它有两个全局锁,一个负责放元素,一个负责取元素。

static class Node<E> {
        E item;

        /**
         * One of:
         * - the real successor Node
         * - this Node, meaning the successor is head.next
         * - null, meaning there is no successor (this is the last node)
         */
        Node<E> next;

        Node(E x) { item = x; }
    }

除了节点之外。

private transient Node<E> last;//尾节点

transient Node<E> head;//头节点

private final AtomicInteger count = new AtomicInteger();//计算当前阻塞队列中的元素个数 

private final int capacity;//容量
 
 //获取并移除元素时使用的锁,如take, poll, etc
private final ReentrantLock takeLock = new ReentrantLock();

//notEmpty条件对象,当队列没有数据时用于挂起执行删除的线程
private final Condition notEmpty = takeLock.newCondition();

//添加元素时使用的锁如 put, offer, etc
private final ReentrantLock putLock = new ReentrantLock();

//notFull条件对象,当队列数据已满时用于挂起执行添加的线程
private final Condition notFull = putLock.newCondition();

主要方法

put()方法

  public void put(E e) throws InterruptedException {
        if (e == null) throw new NullPointerException();
        // Note: convention in all put/take/etc is to preset local var
        // holding count negative to indicate failure unless set.
        int c = -1;
        Node<E> node = new Node<E>(e);
        final ReentrantLock putLock = this.putLock;
        final AtomicInteger count = this.count;
        putLock.lockInterruptibly();
        try {
   
            while (count.get() == capacity) {
                notFull.await();
            }
            enqueue(node);
            c = count.getAndIncrement();
            if (c + 1 < capacity)
                notFull.signal();
        } finally {
            putLock.unlock();
        }
        if (c == 0)
            signalNotEmpty();
    }

基本和ArrayBlockingQueue一样,只是锁的数量不同,导致有一些细微的区别。

代码示例

public class TestDemo16 {
    private static LinkedBlockingQueue<Integer> queue = new LinkedBlockingQueue<>(10);
    public static void main(String[] args) {
        new Thread("put"){
            @Override
            public void run() {
                //添加元素
                for(int i=0; i<10; i++){
                    System.out.println("put: "+i);
                    try {
                        queue.put(i);
                        TimeUnit.MILLISECONDS.sleep(100);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }.start();

        new Thread("take"){
            @Override
            public void run() {
                //获取元素
                for(int i=0; i<10; i++){
                    try {
                        System.out.println("take: "+queue.take());
                        TimeUnit.MILLISECONDS.sleep(100);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }.start();
    }
}

DelayQueue

基于PriorityQueue 延时阻塞队列,DelayQueue中的元素只有当其延时时间到达,才能够去当前队列中获取到该元素,DelayQueue是一个无界队列。主要用于缓存系统的设计、定时任务系统的设计。
实现DelayQueue的三个步骤

第一步:继承Delayed接口

第二步:实现getDelay(TimeUnit unit),该方法返回当前元素还需要延时多长时间,单位是纳秒

第三步:实现compareTo方法来指定元素的顺序
例如;

class Test implements Delayed {
    private long time; //Test实例延时时间

    public Test(long time, TimeUnit unit){
        this.time = System.currentTimeMillis() + unit.toMillis(time);
    }

    @Override
    public long getDelay(TimeUnit unit) {
        return this.time - System.currentTimeMillis();
    }

    @Override
    public int compareTo(Delayed o) {
        long diff = this.time - ((Test)o).time;
        if(diff <= 0){
            return -1;
        }else{
            return 1;
        }
    }
}
        DelayQueue<Test> queue = new DelayQueue<>();
        queue.put(new Test(5, TimeUnit.SECONDS));
        queue.put(new Test(10, TimeUnit.SECONDS));
        queue.put(new Test(15, TimeUnit.SECONDS));

        System.out.println("begin time: "+ LocalDateTime.now().format(DateTimeFormatter.ISO_LOCAL_DATE_TIME));
        for(int i=0; i<3; i++){
            try {
                Test test = queue.take();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("time: "+LocalDateTime.now().format(DateTimeFormatter.ISO_LOCAL_DATE_TIME));
        }

SynchronousQueue

SynchronousQueue是一个不存储元素的阻塞队列。每一个put操作必须等待一个take操作,否则不能继续添加元素。它支持公平访问队列。默认情况下线程采用非公平性策略访问队列。使用以下构造方法可以创建公平性访问的SynchronousQueue,如果设置为true,则等待的线程会采用先进先出的顺序访问队列

SynchronousQueue可以看成是一个传球手,负责把生产者线程处理的数据直接传递给消费者线程。队列本身并不存储任何元素,非常适合传递性场景。SynchronousQueue的吞吐量高于LinkedBlockingQueue和ArrayBlockingQueue.

 public static void main(String[] args) throws InterruptedException {
        SynchronousQueue queue=new SynchronousQueue();
        LinkedBlockingQueue
        new Thread("put"){
            @Override
            public void run() {
                System.out.println("put has started");
                for(int i=0;i<5;i++){
                    System.out.println("put after takeThread");
                    try {
                        queue.put((int)((Math.random() * 100) + 1));
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                System.out.println("put has ended");
            }
        }.start();
        new Thread("take"){
            @Override
            public void run() {
                System.out.println("take has started");
                for(int i=0;i<5;i++){
                    try {
                        System.out.println("take from putThread"+queue.take());
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                System.out.println("put has ended");
            }
        }.start();
        }

总结

1:ArrayBlockingQueue和LinkedBlockingQueue的区别和联系?
1)数据存储容器不一样,ArrayBlockingQueue采用数组去存储数据、LinkedBlockingQueue采用链表去存储数据。
2)ArrayBlockingQueue(循环数组)采用数组去存储数据,不会产生额外的对象实例; LinkedBlockingQueue采用链表去存储数据,在插入和删除元素只与一个节点有关,需要去生成一个额外的Node对象,这可能长时间内需要并发处理大批量的数据,对于性能和后期GC会产生影响。
3)ArrayBlockingQueue是有界的,初始化时必须要指定容量;LinkedBlockingQueue默认是无界的,Integer.MAX_VALUE, 当添加速度大于删除速度、有可能造成内存溢出。
4) ArrayBlockingQueue在读和写使用的锁是一样的,即添加操作和删除操作使用的是同一个ReentrantLock,没有实现锁分离;LinkedBlockingQueue实现了锁分离,添加的时候采用putLock、删除的时候采用takeLock,这样能提高队列的吞吐量。
2:ArrayBlockingQueue可以使用两把锁提高效率吗?
不能,主要原因是ArrayBlockingQueue底层循环数组来存储数据,LinkedBlockingQueue底层 链表来存储数据,链表队列的添加和删除,只是和某一个节点有关,为了防止head和last相互影响,就需要有一个原子性的计数器,每个添加操作先加入队列,计数器+1,这样是为了保证队列在移除的时候, 长度是大于等于计数器的,通过原子性的计数器,使得当前添加和移除互不干扰。对于循环数据来说,当我们走到最后一个位置需要返回到第一个位置,这样的操作是无法原子化,只能使用同一把锁来解决。

你可能感兴趣的:(阻塞队列)