Zynq-Linux移植学习笔记之28-PS端I2C从模式实现

1、背景介绍

最近在调试集群处理平台,模块上使用了支持IPMI的BMC控制芯片。该芯片与ZYNQ通过I2C总线相连,上面跑IPMB协议。ZYNQ作机箱管理,对所有BMC进行控制,而BMC再控制本模块的负载上下电。

 

2、问题描述

ZYNQ与BMC通过I2C总线进行数据传输,按照VITA46.11规范,要求机箱管理既能做I2C的master,也能做i2c slave(此时BMC做master),于是要求ZYNQ能进行I2C主从模式切换。ZYNQ PS端的I2C控制器作为master很容易,之前也通过I2C控制器配置1848交换芯片,不会的是如何让I2C控制器运行在slave模式。问了一下AVNET代理,发现他们也没搞过。在Xilinx论坛上面发帖,老外给了一个他们ZYNQ作为i2c从的测试例子(见链接),但帮助不大,唯一的帮助就是让我相信I2C控制器肯定支持slave模式。在xilinx wiki(链接)上面可以看到新发布的驱动版本已经支持了I2C slave mode。

 

3、解决思路

对i2c-cadence.c驱动进行了代码分析,发现CONFIG_I2C_SLAVE的宏定义随处可见,其中最重要的莫过于下面这个地方。

Zynq-Linux移植学习笔记之28-PS端I2C从模式实现_第1张图片

Cdns_reg_slave和cdns_unreg_slave这两个函数从字面意义来看明显是对寄存器配置成slave或unslave模式的意思。可惜在linux内核代码中完全没找到调用这两个函数的地方。

由此看来,需要手动添加这两个函数,可以在i2c-dev.c中修改ioctl部分的代码,如下图所示,把原来i2c_slave部分的代码修改为调用reg_slave。

Zynq-Linux移植学习笔记之28-PS端I2C从模式实现_第2张图片

在reg_slave中增加了对i2c控制器进行复位的操作

Zynq-Linux移植学习笔记之28-PS端I2C从模式实现_第3张图片

Zynq-Linux移植学习笔记之28-PS端I2C从模式实现_第4张图片

在set mode函数中,直接往i2c控制器写值,设置control寄存器、设置i2c地址(由于地址固定,这里写死为0x10)、启用收数中断。

Zynq-Linux移植学习笔记之28-PS端I2C从模式实现_第5张图片

当i2c控制器收到数之后,会调用上面函数,根据模式进入不同的中断处理函数。

完成这些操作后,编译得到内核,在应用中可以通过ioctl设置i2c的从模式了。

Zynq-Linux移植学习笔记之28-PS端I2C从模式实现_第6张图片

在i2c驱动的收数函数中增加了部分打印

Zynq-Linux移植学习笔记之28-PS端I2C从模式实现_第7张图片

程序执行打印如下。

Zynq-Linux移植学习笔记之28-PS端I2C从模式实现_第8张图片

4、拓展

实现了i2c从模式后,就可以进行主从模式切换了。切换需要使用unreg_slave,再次修改i2c-dev.c

Zynq-Linux移植学习笔记之28-PS端I2C从模式实现_第9张图片

在unreg_slave函数中设置了i2c的模式为主模式

Zynq-Linux移植学习笔记之28-PS端I2C从模式实现_第10张图片

需要注意的是,从模式切换到主模式时需要判断总线是否被占用,这里用一个函数加以判断

Zynq-Linux移植学习笔记之28-PS端I2C从模式实现_第11张图片

在应用中调用下面函数即可进行切换

Zynq-Linux移植学习笔记之28-PS端I2C从模式实现_第12张图片

5、总结

I2c算是比较简单的驱动,但是调试的过程中遇到一些问题靠软件是查不出来的,需要硬件抓信号,如果硬件有问题,软件再怎么努力也没用。所以以后遇到类似的情况,当软件再也查不出问题时,一定要让硬件查一查,否则必然是白白浪费时间。

6、相关代码

i2c-cadence.c

/*
 * I2C bus driver for the Cadence I2C controller.
 *
 * Copyright (C) 2009 - 2014 Xilinx, Inc.
 *
 * This program is free software; you can redistribute it
 * and/or modify it under the terms of the GNU General Public
 * License as published by the Free Software Foundation;
 * either version 2 of the License, or (at your option) any
 * later version.
 */

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#include 
#include 
#include 
#include 
#include 
#include 
#include 

#include "ring.h"
//#include "query_ioctl.h"

//DECLARE_RING(i2c_recv_ring, 256)

ring_t i2c_recv_ring = { 0, 0, 256};

//query_arg_t q;

/* Register offsets for the I2C device. */
#define CDNS_I2C_CR_OFFSET		0x00 /* Control Register, RW */
#define CDNS_I2C_SR_OFFSET		0x04 /* Status Register, RO */
#define CDNS_I2C_ADDR_OFFSET		0x08 /* I2C Address Register, RW */
#define CDNS_I2C_DATA_OFFSET		0x0C /* I2C Data Register, RW */
#define CDNS_I2C_ISR_OFFSET		0x10 /* IRQ Status Register, RW */
#define CDNS_I2C_XFER_SIZE_OFFSET	0x14 /* Transfer Size Register, RW */
#define CDNS_I2C_SLV_PAUSE_OFFSET	0x18 /* Transfer Size Register, RW */
#define CDNS_I2C_TIME_OUT_OFFSET	0x1C /* Time Out Register, RW */
#define CDNS_I2C_IMR_OFFSET		0x20 /* IRQ Mask Register, RO */
#define CDNS_I2C_IER_OFFSET		0x24 /* IRQ Enable Register, WO */
#define CDNS_I2C_IDR_OFFSET		0x28 /* IRQ Disable Register, WO */

/* Control Register Bit mask definitions */
#define CDNS_I2C_CR_SLVMON		BIT(5) /* Slave monitor mode bit */
#define CDNS_I2C_CR_HOLD		BIT(4) /* Hold Bus bit */
#define CDNS_I2C_CR_ACK_EN		BIT(3)
#define CDNS_I2C_CR_NEA			BIT(2)
#define CDNS_I2C_CR_MS			BIT(1)
/* Read or Write Master transfer 0 = Transmitter, 1 = Receiver */
#define CDNS_I2C_CR_RW			BIT(0)
/* 1 = Auto init FIFO to zeroes */
#define CDNS_I2C_CR_CLR_FIFO		BIT(6)
#define CDNS_I2C_CR_DIVA_SHIFT		14
#define CDNS_I2C_CR_DIVA_MASK		(3 << CDNS_I2C_CR_DIVA_SHIFT)
#define CDNS_I2C_CR_DIVB_SHIFT		8
#define CDNS_I2C_CR_DIVB_MASK		(0x3f << CDNS_I2C_CR_DIVB_SHIFT)

#define CDNS_I2C_CR_SLAVE_EN_MASK	(CDNS_I2C_CR_CLR_FIFO | \
					 CDNS_I2C_CR_NEA | \
					 CDNS_I2C_CR_ACK_EN | \
					 CDNS_I2C_CR_MS)

/* Status Register Bit mask definitions */
#define CDNS_I2C_SR_BA		BIT(8)
#define CDNS_I2C_SR_TXDV	BIT(6)
#define CDNS_I2C_SR_RXDV	BIT(5)
#define CDNS_I2C_SR_RXRW	BIT(3)

/*
 * I2C Address Register Bit mask definitions
 * Normal addressing mode uses [6:0] bits. Extended addressing mode uses [9:0]
 * bits. A write access to this register always initiates a transfer if the I2C
 * is in master mode.
 */
#define CDNS_I2C_ADDR_MASK	0x000003FF /* I2C Address Mask */

/*
 * I2C Interrupt Registers Bit mask definitions
 * All the four interrupt registers (Status/Mask/Enable/Disable) have the same
 * bit definitions.
 */
#define CDNS_I2C_IXR_ARB_LOST		BIT(9)
#define CDNS_I2C_IXR_RX_UNF		BIT(7)
#define CDNS_I2C_IXR_TX_OVF		BIT(6)
#define CDNS_I2C_IXR_RX_OVF		BIT(5)
#define CDNS_I2C_IXR_SLV_RDY		BIT(4)
#define CDNS_I2C_IXR_TO			BIT(3)
#define CDNS_I2C_IXR_NACK		BIT(2)
#define CDNS_I2C_IXR_DATA		BIT(1)
#define CDNS_I2C_IXR_COMP		BIT(0)

#define CDNS_I2C_IXR_ALL_INTR_MASK	(CDNS_I2C_IXR_ARB_LOST | \
					 CDNS_I2C_IXR_RX_UNF | \
					 CDNS_I2C_IXR_TX_OVF | \
					 CDNS_I2C_IXR_RX_OVF | \
					 CDNS_I2C_IXR_SLV_RDY | \
					 CDNS_I2C_IXR_TO | \
					 CDNS_I2C_IXR_NACK | \
					 CDNS_I2C_IXR_DATA | \
					 CDNS_I2C_IXR_COMP)

#define CDNS_I2C_IXR_ERR_INTR_MASK	(CDNS_I2C_IXR_ARB_LOST | \
					 CDNS_I2C_IXR_RX_UNF | \
					 CDNS_I2C_IXR_TX_OVF | \
					 CDNS_I2C_IXR_RX_OVF | \
					 CDNS_I2C_IXR_NACK)

#define CDNS_I2C_ENABLED_INTR_MASK	(CDNS_I2C_IXR_ARB_LOST | \
					 CDNS_I2C_IXR_RX_UNF | \
					 CDNS_I2C_IXR_TX_OVF | \
					 CDNS_I2C_IXR_RX_OVF | \
					 CDNS_I2C_IXR_NACK | \
					 CDNS_I2C_IXR_DATA | \
					 CDNS_I2C_IXR_COMP)

#define CDNS_I2C_IXR_SLAVE_INTR_MASK	(CDNS_I2C_IXR_RX_UNF | \
					 CDNS_I2C_IXR_TX_OVF | \
					 CDNS_I2C_IXR_RX_OVF | \
					 CDNS_I2C_IXR_TO | \
					 CDNS_I2C_IXR_NACK | \
					 CDNS_I2C_IXR_DATA | \
					 CDNS_I2C_IXR_COMP)

#define CDNS_I2C_TIMEOUT		msecs_to_jiffies(1000)
/* timeout for pm runtime autosuspend */
#define CNDS_I2C_PM_TIMEOUT		1000	/* ms */

#define CDNS_I2C_FIFO_DEPTH		16
/* FIFO depth at which the DATA interrupt occurs */
#define CDNS_I2C_DATA_INTR_DEPTH	(CDNS_I2C_FIFO_DEPTH - 2)
#define CDNS_I2C_MAX_TRANSFER_SIZE	255
/* Transfer size in multiples of data interrupt depth */
#define CDNS_I2C_TRANSFER_SIZE	(CDNS_I2C_MAX_TRANSFER_SIZE - 3)

#define DRIVER_NAME		"cdns-i2c"

#define CDNS_I2C_SPEED_MAX	400000
#define CDNS_I2C_SPEED_DEFAULT	100000

#define CDNS_I2C_DIVA_MAX	4
#define CDNS_I2C_DIVB_MAX	64

#define CDNS_I2C_TIMEOUT_MAX	0xFF

#define CDNS_I2C_BROKEN_HOLD_BIT	BIT(0)

#define cdns_i2c_readreg(offset)       readl_relaxed(id->membase + offset)
#define cdns_i2c_writereg(val, offset) writel_relaxed(val, id->membase + offset)

#if IS_ENABLED(CONFIG_I2C_SLAVE)
/**
 * enum cdns_i2c_mode - I2C Controller current operating mode
 *
 * @CDNS_I2C_MODE_SLAVE:       I2C controller operating in slave mode
 * @CDNS_I2C_MODE_MASTER:      I2C Controller operating in master mode
 */
enum cdns_i2c_mode {
	CDNS_I2C_MODE_SLAVE,
	CDNS_I2C_MODE_MASTER,
};

/**
 * enum cdns_i2c_slave_mode - Slave state when I2C is operating in slave mode
 *
 * @CDNS_I2C_SLAVE_STATE_IDLE: I2C slave idle
 * @CDNS_I2C_SLAVE_STATE_SEND: I2C slave sending data to master
 * @CDNS_I2C_SLAVE_STATE_RECV: I2C slave receiving data from master
 */
enum cdns_i2c_slave_state {
	CDNS_I2C_SLAVE_STATE_IDLE,
	CDNS_I2C_SLAVE_STATE_SEND,
	CDNS_I2C_SLAVE_STATE_RECV,
};
#endif

/**
 * struct cdns_i2c - I2C device private data structure
 *
 * @dev:		Pointer to device structure
 * @membase:		Base address of the I2C device
 * @adap:		I2C adapter instance
 * @p_msg:		Message pointer
 * @err_status:		Error status in Interrupt Status Register
 * @xfer_done:		Transfer complete status
 * @p_send_buf:		Pointer to transmit buffer
 * @p_recv_buf:		Pointer to receive buffer
 * @send_count:		Number of bytes still expected to send
 * @recv_count:		Number of bytes still expected to receive
 * @curr_recv_count:	Number of bytes to be received in current transfer
 * @irq:		IRQ number
 * @input_clk:		Input clock to I2C controller
 * @i2c_clk:		Maximum I2C clock speed
 * @bus_hold_flag:	Flag used in repeated start for clearing HOLD bit
 * @clk:		Pointer to struct clk
 * @clk_rate_change_nb:	Notifier block for clock rate changes
 * @quirks:		flag for broken hold bit usage in r1p10
 * @ctrl_reg:		Cached value of the control register.
 * @rinfo:		Structure holding recovery information.
 * @pinctrl:		Pin control state holder.
 * @pinctrl_pins_default: Default pin control state.
 * @pinctrl_pins_gpio:	GPIO pin control state.
 * @slave:		Registered slave instance.
 * @dev_mode:		I2C operating role(master/slave).
 * @slave_state:	I2C Slave state(idle/read/write).
 */
struct cdns_i2c {
	struct device		*dev;
	void __iomem *membase;
	struct i2c_adapter adap;
	struct i2c_msg *p_msg;
	int err_status;
	struct completion xfer_done;
	unsigned char *p_send_buf;
	unsigned char *p_recv_buf;
	unsigned int send_count;
	unsigned int recv_count;
	unsigned int curr_recv_count;
	int irq;
	unsigned long input_clk;
	unsigned int i2c_clk;
	unsigned int bus_hold_flag;
	struct clk *clk;
	struct notifier_block clk_rate_change_nb;
	u32 quirks;
	u32 ctrl_reg;
	struct i2c_bus_recovery_info rinfo;
	struct pinctrl *pinctrl;
	struct pinctrl_state *pinctrl_pins_default;
	struct pinctrl_state *pinctrl_pins_gpio;
#if IS_ENABLED(CONFIG_I2C_SLAVE)
	struct i2c_client *slave;
	enum cdns_i2c_mode dev_mode;
	enum cdns_i2c_slave_state slave_state;
#endif
};

struct cdns_platform_data {
	u32 quirks;
};


static unsigned short i2c_rx_len=1;
#define to_cdns_i2c(_nb)	container_of(_nb, struct cdns_i2c, \
					     clk_rate_change_nb)

/**
 * cdns_i2c_clear_bus_hold - Clear bus hold bit
 * @id:	Pointer to driver data struct
 *
 * Helper to clear the controller's bus hold bit.
 */
static void cdns_i2c_clear_bus_hold(struct cdns_i2c *id)
{
	u32 reg = cdns_i2c_readreg(CDNS_I2C_CR_OFFSET);
	if (reg & CDNS_I2C_CR_HOLD)
		cdns_i2c_writereg(reg & ~CDNS_I2C_CR_HOLD, CDNS_I2C_CR_OFFSET);
}

static inline bool cdns_is_holdquirk(struct cdns_i2c *id, bool hold_wrkaround)
{
	return (hold_wrkaround &&
		(id->curr_recv_count == CDNS_I2C_FIFO_DEPTH + 1));
}

#if IS_ENABLED(CONFIG_I2C_SLAVE)
static void cdns_i2c_set_mode(enum cdns_i2c_mode mode, struct cdns_i2c *id)
{
	u32 reg;

	/* Disable all interrupts */
	cdns_i2c_writereg(CDNS_I2C_IXR_ALL_INTR_MASK, CDNS_I2C_IDR_OFFSET);

	/* Clear FIFO and transfer size */
	cdns_i2c_writereg(CDNS_I2C_CR_CLR_FIFO, CDNS_I2C_CR_OFFSET);

	/* Update device mode and state */
	id->dev_mode = mode;
	id->slave_state = CDNS_I2C_SLAVE_STATE_IDLE;

	switch (mode) {
	case CDNS_I2C_MODE_MASTER:
		/* Enable i2c master */
		cdns_i2c_writereg(id->ctrl_reg, CDNS_I2C_CR_OFFSET);
		break;
	case CDNS_I2C_MODE_SLAVE:
		/* Enable i2c slave */
		reg = cdns_i2c_readreg(CDNS_I2C_CR_OFFSET);
		reg &= ~CDNS_I2C_CR_SLAVE_EN_MASK;

		//cdns_i2c_writereg(reg, CDNS_I2C_CR_OFFSET);
cdns_i2c_writereg(0x4c, CDNS_I2C_CR_OFFSET);

		/* Setting slave address */
cdns_i2c_writereg(0x10,CDNS_I2C_ADDR_OFFSET);

		/* Enable slave send/receive interrupts */
cdns_i2c_writereg(0x1|0x2|0x4|0x8|0x20|0x80,CDNS_I2C_IER_OFFSET);

		break;
	}
}

static void cdns_i2c_slave_rcv_data(struct cdns_i2c *id)
{
	u8 bytes;
	unsigned char data;
	static int num=0;

	/* Prepare backend for data reception */
	if (id->slave_state == CDNS_I2C_SLAVE_STATE_IDLE) {
		id->slave_state = CDNS_I2C_SLAVE_STATE_RECV;
		//i2c_slave_event(id->slave, I2C_SLAVE_WRITE_REQUESTED, NULL);
	}

	/* Fetch number of bytes to receive */
	bytes = cdns_i2c_readreg(CDNS_I2C_XFER_SIZE_OFFSET);
	//printk("###zz debug###revc bytes is 0x%x\n",bytes);
	/* Read data and send to backend */
	while (bytes--) {
		data = cdns_i2c_readreg(CDNS_I2C_DATA_OFFSET);
		if(num<10)		
		{
			printk("0x%x ",data);
		}		
		num++;
	  if (( i2c_rx_len != 0) && ( i2c_rx_len < ring_free_size(&i2c_recv_ring))) 
			ring_put_at_free_space(&i2c_recv_ring, data, i2c_rx_len++);
		
		//i2c_slave_event(id->slave, I2C_SLAVE_WRITE_RECEIVED, &data);
	}
	//printk("\n");

}

static void cdns_i2c_slave_send_data(struct cdns_i2c *id)
{
	u8 data;

	/* Prepare backend for data transmission */
	if (id->slave_state == CDNS_I2C_SLAVE_STATE_IDLE) {
		id->slave_state = CDNS_I2C_SLAVE_STATE_SEND;
		i2c_slave_event(id->slave, I2C_SLAVE_READ_REQUESTED, &data);
	} else {
		i2c_slave_event(id->slave, I2C_SLAVE_READ_PROCESSED, &data);
	}

	/* Send data over bus */
	cdns_i2c_writereg(data, CDNS_I2C_DATA_OFFSET);
}

/**
 * cdns_i2c_slave_isr - Interrupt handler for the I2C device in slave role
 * @ptr:       Pointer to I2C device private data
 *
 * This function handles the data interrupt and transfer complete interrupt of
 * the I2C device in slave role.
 *
 * Return: IRQ_HANDLED always
 */
static irqreturn_t cdns_i2c_slave_isr(void *ptr)
{
	struct cdns_i2c *id = ptr;
	u8 byte0;
	unsigned int isr_status, i2c_status;

	/* Fetch the interrupt status */
	isr_status = cdns_i2c_readreg(CDNS_I2C_ISR_OFFSET);
	cdns_i2c_writereg(isr_status, CDNS_I2C_ISR_OFFSET);

	/* Ignore masked interrupts */
	isr_status &= ~cdns_i2c_readreg(CDNS_I2C_IMR_OFFSET);

	/* Fetch transfer mode (send/receive) */
	i2c_status = cdns_i2c_readreg(CDNS_I2C_SR_OFFSET);

	/* Handle data send/receive */
	if (i2c_status & CDNS_I2C_SR_RXRW) {
		/* Send data to master */
		if (isr_status & CDNS_I2C_IXR_DATA)
			cdns_i2c_slave_send_data(id);

		if (isr_status & CDNS_I2C_IXR_COMP) {
			id->slave_state = CDNS_I2C_SLAVE_STATE_IDLE;
			//i2c_slave_event(id->slave, I2C_SLAVE_STOP, NULL);
		}
	} else {
		/* Receive data from master */
		if (isr_status & CDNS_I2C_IXR_DATA)
			cdns_i2c_slave_rcv_data(id);

		if (isr_status & CDNS_I2C_IXR_COMP) {
			cdns_i2c_slave_rcv_data(id);



			if ((i2c_rx_len < ring_free_size(&i2c_recv_ring)) && (i2c_rx_len != 0)) 
			{
					/* Store the len byte (byte 0) */
					byte0 = i2c_rx_len - 1;	
			
					ring_put_at_free_space(&i2c_recv_ring, byte0, 0);
	
					ring_set_free_space_ptr(&i2c_recv_ring,ring_get_free_space_ptr(&i2c_recv_ring, i2c_rx_len));
			}
			
			i2c_rx_len = 1;
			id->slave_state = CDNS_I2C_SLAVE_STATE_IDLE;
			//i2c_slave_event(id->slave, I2C_SLAVE_STOP, NULL);
		}
	}

	/* Master indicated xfer stop or fifo underflow/overflow */
	if (isr_status & (CDNS_I2C_IXR_NACK | CDNS_I2C_IXR_RX_OVF |
			  CDNS_I2C_IXR_RX_UNF | CDNS_I2C_IXR_TX_OVF)) {
		id->slave_state = CDNS_I2C_SLAVE_STATE_IDLE;
		//i2c_slave_event(id->slave, I2C_SLAVE_STOP, NULL);
		cdns_i2c_writereg(CDNS_I2C_CR_CLR_FIFO, CDNS_I2C_CR_OFFSET);
	}

	return IRQ_HANDLED;
}
#endif

/**
 * cdns_i2c_master_isr - Interrupt handler for the I2C device in master role
 * @ptr:       Pointer to I2C device private data
 *
 * This function handles the data interrupt, transfer complete interrupt and
 * the error interrupts of the I2C device in master role.
 *
 * Return: IRQ_HANDLED always
 */
static irqreturn_t cdns_i2c_master_isr(void *ptr)
{
	unsigned int isr_status, avail_bytes, updatetx;
	unsigned int bytes_to_send;
	bool hold_quirk;
	struct cdns_i2c *id = ptr;
	/* Signal completion only after everything is updated */
	int done_flag = 0;
	irqreturn_t status = IRQ_NONE;

	isr_status = cdns_i2c_readreg(CDNS_I2C_ISR_OFFSET);
	cdns_i2c_writereg(isr_status, CDNS_I2C_ISR_OFFSET);

	/* Handling nack and arbitration lost interrupt */
	if (isr_status & (CDNS_I2C_IXR_NACK | CDNS_I2C_IXR_ARB_LOST)) {
		done_flag = 1;
		status = IRQ_HANDLED;
	}

	/*
	 * Check if transfer size register needs to be updated again for a
	 * large data receive operation.
	 */
	updatetx = 0;
	if (id->recv_count > id->curr_recv_count)
		updatetx = 1;

	hold_quirk = (id->quirks & CDNS_I2C_BROKEN_HOLD_BIT) && updatetx;

	/* When receiving, handle data interrupt and completion interrupt */
	if (id->p_recv_buf &&
	    ((isr_status & CDNS_I2C_IXR_COMP) ||
	     (isr_status & CDNS_I2C_IXR_DATA))) {
		/* Read data if receive data valid is set */
		while (cdns_i2c_readreg(CDNS_I2C_SR_OFFSET) &
		       CDNS_I2C_SR_RXDV) {
			/*
			 * Clear hold bit that was set for FIFO control if
			 * RX data left is less than FIFO depth, unless
			 * repeated start is selected.
			 */
			if ((id->recv_count < CDNS_I2C_FIFO_DEPTH) &&
			    !id->bus_hold_flag)
				cdns_i2c_clear_bus_hold(id);

			*(id->p_recv_buf)++ =
				cdns_i2c_readreg(CDNS_I2C_DATA_OFFSET);
			id->recv_count--;
			id->curr_recv_count--;

			if (cdns_is_holdquirk(id, hold_quirk))
				break;
		}

		/*
		 * The controller sends NACK to the slave when transfer size
		 * register reaches zero without considering the HOLD bit.
		 * This workaround is implemented for large data transfers to
		 * maintain transfer size non-zero while performing a large
		 * receive operation.
		 */
		if (cdns_is_holdquirk(id, hold_quirk)) {
			/* wait while fifo is full */
			while (cdns_i2c_readreg(CDNS_I2C_XFER_SIZE_OFFSET) !=
			       (id->curr_recv_count - CDNS_I2C_FIFO_DEPTH))
				;

			/*
			 * Check number of bytes to be received against maximum
			 * transfer size and update register accordingly.
			 */
			if (((int)(id->recv_count) - CDNS_I2C_FIFO_DEPTH) >
			    CDNS_I2C_TRANSFER_SIZE) {
				cdns_i2c_writereg(CDNS_I2C_TRANSFER_SIZE,
						  CDNS_I2C_XFER_SIZE_OFFSET);
				id->curr_recv_count = CDNS_I2C_TRANSFER_SIZE +
						      CDNS_I2C_FIFO_DEPTH;
			} else {
				cdns_i2c_writereg(id->recv_count -
						  CDNS_I2C_FIFO_DEPTH,
						  CDNS_I2C_XFER_SIZE_OFFSET);
				id->curr_recv_count = id->recv_count;
			}
		} else if (id->recv_count && !hold_quirk &&
						!id->curr_recv_count) {

			/* Set the slave address in address register*/
			cdns_i2c_writereg(id->p_msg->addr & CDNS_I2C_ADDR_MASK,
						CDNS_I2C_ADDR_OFFSET);

			if (id->recv_count > CDNS_I2C_TRANSFER_SIZE) {
				cdns_i2c_writereg(CDNS_I2C_TRANSFER_SIZE,
						CDNS_I2C_XFER_SIZE_OFFSET);
				id->curr_recv_count = CDNS_I2C_TRANSFER_SIZE;
			} else {
				cdns_i2c_writereg(id->recv_count,
						CDNS_I2C_XFER_SIZE_OFFSET);
				id->curr_recv_count = id->recv_count;
			}
		}

		/* Clear hold (if not repeated start) and signal completion */
		if ((isr_status & CDNS_I2C_IXR_COMP) && !id->recv_count) {
			if (!id->bus_hold_flag)
				cdns_i2c_clear_bus_hold(id);
			done_flag = 1;
		}

		status = IRQ_HANDLED;
	}

	/* When sending, handle transfer complete interrupt */
	if ((isr_status & CDNS_I2C_IXR_COMP) && !id->p_recv_buf) {
		/*
		 * If there is more data to be sent, calculate the
		 * space available in FIFO and fill with that many bytes.
		 */
		if (id->send_count) {
			avail_bytes = CDNS_I2C_FIFO_DEPTH -
			    cdns_i2c_readreg(CDNS_I2C_XFER_SIZE_OFFSET);
			if (id->send_count > avail_bytes)
				bytes_to_send = avail_bytes;
			else
				bytes_to_send = id->send_count;

			while (bytes_to_send--) {
				cdns_i2c_writereg(
					(*(id->p_send_buf)++),
					 CDNS_I2C_DATA_OFFSET);
				id->send_count--;
			}
		} else {
			/*
			 * Signal the completion of transaction and
			 * clear the hold bus bit if there are no
			 * further messages to be processed.
			 */
			done_flag = 1;
		}
		if (!id->send_count && !id->bus_hold_flag)
			cdns_i2c_clear_bus_hold(id);

		status = IRQ_HANDLED;
	}

	/* Handling Slave monitor mode interrupt */
	if (isr_status & CDNS_I2C_IXR_SLV_RDY) {
		unsigned int ctrl_reg;
		/* Read control register */
		ctrl_reg = cdns_i2c_readreg(CDNS_I2C_CR_OFFSET);

		/* Disable slave monitor mode */
		ctrl_reg &= ~CDNS_I2C_CR_SLVMON;
		cdns_i2c_writereg(ctrl_reg, CDNS_I2C_CR_OFFSET);

		/* Clear interrupt flag for slvmon mode */
		cdns_i2c_writereg(CDNS_I2C_IXR_SLV_RDY, CDNS_I2C_IDR_OFFSET);

		done_flag = 1;
		status = IRQ_HANDLED;
	}

	/* Update the status for errors */
	id->err_status = isr_status & CDNS_I2C_IXR_ERR_INTR_MASK;
	if (id->err_status)
		status = IRQ_HANDLED;

	if (done_flag)
		complete(&id->xfer_done);

	return status;
}

/**
 * cdns_i2c_isr - Interrupt handler for the I2C device
 * @irq:	irq number for the I2C device
 * @ptr:	void pointer to cdns_i2c structure
 *
 * This function passes the control to slave/master based on current role of
 * i2c controller.
 *
 * Return: IRQ_HANDLED always
 */
static irqreturn_t cdns_i2c_isr(int irq, void *ptr)
{
#if IS_ENABLED(CONFIG_I2C_SLAVE)
	struct cdns_i2c *id = ptr;

	switch (id->dev_mode) {
	case CDNS_I2C_MODE_SLAVE:
//printk("###i2c slave interrupt\n");
		dev_dbg(&id->adap.dev, "slave interrupt\n");
		cdns_i2c_slave_isr(ptr);
		break;
	case CDNS_I2C_MODE_MASTER:
		dev_dbg(&id->adap.dev, "master interrupt\n");
		cdns_i2c_master_isr(ptr);
		break;
	default:
		dev_dbg(&id->adap.dev, "undefined interrupt\n");
		break;
	}
#else
	cdns_i2c_master_isr(ptr);
#endif
//cdns_i2c_writereg(CDNS_I2C_IXR_ALL_INTR_MASK, CDNS_I2C_IDR_OFFSET);
	return IRQ_HANDLED;
}

/**
 * cdns_i2c_mrecv - Prepare and start a master receive operation
 * @id:		pointer to the i2c device structure
 */
static void cdns_i2c_mrecv(struct cdns_i2c *id)
{
	unsigned int ctrl_reg;
	unsigned int isr_status;

	id->p_recv_buf = id->p_msg->buf;
	id->recv_count = id->p_msg->len;

	/* Put the controller in master receive mode and clear the FIFO */
	ctrl_reg = cdns_i2c_readreg(CDNS_I2C_CR_OFFSET);
	ctrl_reg |= CDNS_I2C_CR_RW | CDNS_I2C_CR_CLR_FIFO;

	if (id->p_msg->flags & I2C_M_RECV_LEN)
		id->recv_count = I2C_SMBUS_BLOCK_MAX + 1;

	id->curr_recv_count = id->recv_count;

	/*
	 * Check for the message size against FIFO depth and set the
	 * 'hold bus' bit if it is greater than FIFO depth.
	 */
	if (id->recv_count > CDNS_I2C_FIFO_DEPTH)
		ctrl_reg |= CDNS_I2C_CR_HOLD;

	cdns_i2c_writereg(ctrl_reg, CDNS_I2C_CR_OFFSET);

	/* Clear the interrupts in interrupt status register */
	isr_status = cdns_i2c_readreg(CDNS_I2C_ISR_OFFSET);
	cdns_i2c_writereg(isr_status, CDNS_I2C_ISR_OFFSET);

	/*
	 * The no. of bytes to receive is checked against the limit of
	 * max transfer size. Set transfer size register with no of bytes
	 * receive if it is less than transfer size and transfer size if
	 * it is more. Enable the interrupts.
	 */
	if (id->recv_count > CDNS_I2C_TRANSFER_SIZE) {
		cdns_i2c_writereg(CDNS_I2C_TRANSFER_SIZE,
				  CDNS_I2C_XFER_SIZE_OFFSET);
		id->curr_recv_count = CDNS_I2C_TRANSFER_SIZE;
	} else {
		cdns_i2c_writereg(id->recv_count, CDNS_I2C_XFER_SIZE_OFFSET);
	}

	/* Set the slave address in address register - triggers operation */
	cdns_i2c_writereg(CDNS_I2C_ENABLED_INTR_MASK, CDNS_I2C_IER_OFFSET);
	cdns_i2c_writereg(id->p_msg->addr & CDNS_I2C_ADDR_MASK,
						CDNS_I2C_ADDR_OFFSET);
	/* Clear the bus hold flag if bytes to receive is less than FIFO size */
	if (!id->bus_hold_flag &&
		((id->p_msg->flags & I2C_M_RECV_LEN) != I2C_M_RECV_LEN) &&
		(id->recv_count <= CDNS_I2C_FIFO_DEPTH))
			cdns_i2c_clear_bus_hold(id);
}

/**
 * cdns_i2c_msend - Prepare and start a master send operation
 * @id:		pointer to the i2c device
 */
static void cdns_i2c_msend(struct cdns_i2c *id)
{
	unsigned int avail_bytes;
	unsigned int bytes_to_send;
	unsigned int ctrl_reg;
	unsigned int isr_status;

	id->p_recv_buf = NULL;
	id->p_send_buf = id->p_msg->buf;
	id->send_count = id->p_msg->len;

	/* Set the controller in Master transmit mode and clear the FIFO. */
	ctrl_reg = cdns_i2c_readreg(CDNS_I2C_CR_OFFSET);
	ctrl_reg &= ~CDNS_I2C_CR_RW;
	ctrl_reg |= CDNS_I2C_CR_CLR_FIFO;

	/*
	 * Check for the message size against FIFO depth and set the
	 * 'hold bus' bit if it is greater than FIFO depth.
	 */
	if (id->send_count > CDNS_I2C_FIFO_DEPTH)
		ctrl_reg |= CDNS_I2C_CR_HOLD;
	cdns_i2c_writereg(ctrl_reg, CDNS_I2C_CR_OFFSET);

	/* Clear the interrupts in interrupt status register. */
	isr_status = cdns_i2c_readreg(CDNS_I2C_ISR_OFFSET);
	cdns_i2c_writereg(isr_status, CDNS_I2C_ISR_OFFSET);

	/*
	 * Calculate the space available in FIFO. Check the message length
	 * against the space available, and fill the FIFO accordingly.
	 * Enable the interrupts.
	 */
	avail_bytes = CDNS_I2C_FIFO_DEPTH -
				cdns_i2c_readreg(CDNS_I2C_XFER_SIZE_OFFSET);

	if (id->send_count > avail_bytes)
		bytes_to_send = avail_bytes;
	else
		bytes_to_send = id->send_count;

	while (bytes_to_send--) {
		cdns_i2c_writereg((*(id->p_send_buf)++), CDNS_I2C_DATA_OFFSET);
		id->send_count--;
	}

	/*
	 * Clear the bus hold flag if there is no more data
	 * and if it is the last message.
	 */
	if (!id->bus_hold_flag && !id->send_count)
		cdns_i2c_clear_bus_hold(id);
	/* Set the slave address in address register - triggers operation. */
	cdns_i2c_writereg(CDNS_I2C_ENABLED_INTR_MASK, CDNS_I2C_IER_OFFSET);
	cdns_i2c_writereg(id->p_msg->addr & CDNS_I2C_ADDR_MASK,
						CDNS_I2C_ADDR_OFFSET);
}

/**
 * cdns_i2c_slvmon - Handling Slav monitor mode feature
 * @id:		pointer to the i2c device
 */
static void cdns_i2c_slvmon(struct cdns_i2c *id)
{
	unsigned int ctrl_reg;
	unsigned int isr_status;

	id->p_recv_buf = NULL;
	id->p_send_buf = id->p_msg->buf;
	id->send_count = id->p_msg->len;

	/* Clear the interrupts in interrupt status register. */
	isr_status = cdns_i2c_readreg(CDNS_I2C_ISR_OFFSET);
	cdns_i2c_writereg(isr_status, CDNS_I2C_ISR_OFFSET);

	/* Enable slvmon control reg */
	ctrl_reg = cdns_i2c_readreg(CDNS_I2C_CR_OFFSET);
	ctrl_reg |=  CDNS_I2C_CR_MS | CDNS_I2C_CR_NEA | CDNS_I2C_CR_SLVMON
			| CDNS_I2C_CR_CLR_FIFO;
	ctrl_reg &= ~(CDNS_I2C_CR_RW);
	cdns_i2c_writereg(ctrl_reg, CDNS_I2C_CR_OFFSET);

	/* Initialize slvmon reg */
	cdns_i2c_writereg(0xF, CDNS_I2C_SLV_PAUSE_OFFSET);

	/* Set the slave address to start the slave address transmission */
	cdns_i2c_writereg(id->p_msg->addr, CDNS_I2C_ADDR_OFFSET);

	/* Setup slvmon interrupt flag */
	cdns_i2c_writereg(CDNS_I2C_IXR_SLV_RDY, CDNS_I2C_IER_OFFSET);
}

/**
 * cdns_i2c_master_reset - Reset the interface
 * @adap:	pointer to the i2c adapter driver instance
 *
 * This function cleanup the fifos, clear the hold bit and status
 * and disable the interrupts.
 */
static void cdns_i2c_master_reset(struct i2c_adapter *adap)
{
	struct cdns_i2c *id = adap->algo_data;
	u32 regval;

	/* Disable the interrupts */
	cdns_i2c_writereg(CDNS_I2C_IXR_ALL_INTR_MASK, CDNS_I2C_IDR_OFFSET);
	/* Clear the hold bit and fifos */
	regval = cdns_i2c_readreg(CDNS_I2C_CR_OFFSET);
	regval &= ~(CDNS_I2C_CR_HOLD | CDNS_I2C_CR_SLVMON);
	regval |= CDNS_I2C_CR_CLR_FIFO;
	cdns_i2c_writereg(regval, CDNS_I2C_CR_OFFSET);
	/* Update the transfercount register to zero */
	cdns_i2c_writereg(0, CDNS_I2C_XFER_SIZE_OFFSET);
	/* Clear the interrupt status register */
	regval = cdns_i2c_readreg(CDNS_I2C_ISR_OFFSET);
	cdns_i2c_writereg(regval, CDNS_I2C_ISR_OFFSET);
	/* Clear the status register */
	regval = cdns_i2c_readreg(CDNS_I2C_SR_OFFSET);
	cdns_i2c_writereg(regval, CDNS_I2C_SR_OFFSET);
}

static int cdns_i2c_process_msg(struct cdns_i2c *id, struct i2c_msg *msg,
		struct i2c_adapter *adap)
{
	unsigned long time_left;
	u32 reg;

	id->p_msg = msg;
	id->err_status = 0;
	reinit_completion(&id->xfer_done);

	/* Check for the TEN Bit mode on each msg */
	reg = cdns_i2c_readreg(CDNS_I2C_CR_OFFSET);
	if (msg->flags & I2C_M_TEN) {
		if (reg & CDNS_I2C_CR_NEA)
			cdns_i2c_writereg(reg & ~CDNS_I2C_CR_NEA,
					CDNS_I2C_CR_OFFSET);
	} else {
		if (!(reg & CDNS_I2C_CR_NEA))
			cdns_i2c_writereg(reg | CDNS_I2C_CR_NEA,
					CDNS_I2C_CR_OFFSET);
	}
	/* Check for zero length - Slave monitor mode */
	if (msg->len == 0)
		cdns_i2c_slvmon(id);
	 /* Check for the R/W flag on each msg */
	else if (msg->flags & I2C_M_RD)
		cdns_i2c_mrecv(id);
	else
		cdns_i2c_msend(id);

	/* Wait for the signal of completion */
	time_left = wait_for_completion_timeout(&id->xfer_done, adap->timeout);
	if (time_left == 0) {
		i2c_recover_bus(adap);
		cdns_i2c_master_reset(adap);
		dev_err(id->adap.dev.parent,
				"timeout waiting on completion\n");
		return -ETIMEDOUT;
	}

	cdns_i2c_writereg(CDNS_I2C_IXR_ALL_INTR_MASK,
			  CDNS_I2C_IDR_OFFSET);

	/* If it is bus arbitration error, try again */
	if (id->err_status & CDNS_I2C_IXR_ARB_LOST)
		return -EAGAIN;

	return 0;
}

/**
 * cdns_i2c_master_xfer - The main i2c transfer function
 * @adap:	pointer to the i2c adapter driver instance
 * @msgs:	pointer to the i2c message structure
 * @num:	the number of messages to transfer
 *
 * Initiates the send/recv activity based on the transfer message received.
 *
 * Return: number of msgs processed on success, negative error otherwise
 */
static int cdns_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
				int num)
{
	int ret, count;
	u32 reg;
	struct cdns_i2c *id = adap->algo_data;
	bool hold_quirk;
#if IS_ENABLED(CONFIG_I2C_SLAVE)
	bool change_role = false;
#endif

	ret = pm_runtime_get_sync(id->dev);
	if (ret < 0)
		return ret;

#if IS_ENABLED(CONFIG_I2C_SLAVE)
	/* Check i2c operating mode and switch if possible */
	if (id->dev_mode == CDNS_I2C_MODE_SLAVE) {
		if (id->slave_state != CDNS_I2C_SLAVE_STATE_IDLE)
			return -EAGAIN;

		/* Set mode to master */
		cdns_i2c_set_mode(CDNS_I2C_MODE_MASTER, id);

		/* Mark flag to change role once xfer is completed */
		change_role = true;
	}
#endif

	/* Check if the bus is free */
	if (msgs->len)
		if (cdns_i2c_readreg(CDNS_I2C_SR_OFFSET) & CDNS_I2C_SR_BA) {
			ret = -EAGAIN;
			goto out;
		}

	hold_quirk = !!(id->quirks & CDNS_I2C_BROKEN_HOLD_BIT);
	/*
	 * Set the flag to one when multiple messages are to be
	 * processed with a repeated start.
	 */
	if (num > 1) {
		/*
		 * This controller does not give completion interrupt after a
		 * master receive message if HOLD bit is set (repeated start),
		 * resulting in SW timeout. Hence, if a receive message is
		 * followed by any other message, an error is returned
		 * indicating that this sequence is not supported.
		 */
		for (count = 0; (count < num - 1 && hold_quirk); count++) {
			if (msgs[count].flags & I2C_M_RD) {
				dev_warn(adap->dev.parent,
					 "Can't do repeated start after a receive message\n");
				ret = -EOPNOTSUPP;
				goto out;
			}
		}
		id->bus_hold_flag = 1;
		reg = cdns_i2c_readreg(CDNS_I2C_CR_OFFSET);
		reg |= CDNS_I2C_CR_HOLD;
		cdns_i2c_writereg(reg, CDNS_I2C_CR_OFFSET);
	} else {
		id->bus_hold_flag = 0;
	}

	/* Process the msg one by one */
	for (count = 0; count < num; count++, msgs++) {
		if (count == (num - 1))
			id->bus_hold_flag = 0;

		ret = cdns_i2c_process_msg(id, msgs, adap);
		if (ret)
			goto out;

		/* Report the other error interrupts to application */
		if (id->err_status) {
			cdns_i2c_master_reset(adap);

			if (id->err_status & CDNS_I2C_IXR_NACK) {
				ret = -ENXIO;
				goto out;
			}
			ret = -EIO;
			goto out;
		}
	}

	ret = num;

#if IS_ENABLED(CONFIG_I2C_SLAVE)
	/* Switch i2c mode to slave */
	if (change_role)
		cdns_i2c_set_mode(CDNS_I2C_MODE_SLAVE, id);
#endif

out:
	pm_runtime_mark_last_busy(id->dev);
	pm_runtime_put_autosuspend(id->dev);
	return ret;
}

/**
 * cdns_i2c_func - Returns the supported features of the I2C driver
 * @adap:	pointer to the i2c adapter structure
 *
 * Return: 32 bit value, each bit corresponding to a feature
 */
static u32 cdns_i2c_func(struct i2c_adapter *adap)
{
	u32 func = I2C_FUNC_I2C | I2C_FUNC_10BIT_ADDR |
			(I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK) |
			I2C_FUNC_SMBUS_BLOCK_DATA;

#if IS_ENABLED(CONFIG_I2C_SLAVE)
	func |= I2C_FUNC_SLAVE;
#endif

	return func;
}

static int cdns_i2c_bus_busy(struct cdns_i2c *id)
{
	
	u32 StatusReg;
	int Status;

	StatusReg = cdns_i2c_readreg(CDNS_I2C_SR_OFFSET);

	if ((StatusReg & CDNS_I2C_SR_BA) != 0x0U) 
	{
		Status = 0;
	}
	else 
	{
		Status = -1;
	}
	return Status;

}

#if IS_ENABLED(CONFIG_I2C_SLAVE)
static int cdns_reg_slave(struct i2c_client *slave)
{
	int ret;
	struct cdns_i2c *id = container_of(slave->adapter, struct cdns_i2c,adap);

	if (id->slave)
		return -EBUSY;

	if (slave->flags & I2C_CLIENT_TEN)
		return -EAFNOSUPPORT;

	ret = pm_runtime_get_sync(id->dev);
	if (ret < 0)
		return ret;

	/* Store slave information */
	id->slave = slave;

	//reset i2c controller
cdns_i2c_writereg(0x0,CDNS_I2C_CR_OFFSET);

cdns_i2c_writereg(0xFF,CDNS_I2C_TIME_OUT_OFFSET);

	/* Enable I2C slave */
	cdns_i2c_set_mode(CDNS_I2C_MODE_SLAVE, id);

	return 0;
}

static int cdns_unreg_slave(struct i2c_client *slave)
{
	struct cdns_i2c *id = container_of(slave->adapter, struct cdns_i2c,adap);

	int ret=0;

	pm_runtime_put(id->dev);

	/* Remove slave information */
	id->slave = NULL;

cdns_i2c_writereg(CDNS_I2C_TIMEOUT_MAX, CDNS_I2C_TIME_OUT_OFFSET);

	ret=cdns_i2c_bus_busy(id);
	
	if(ret==0)
	{	
		/* Enable I2C master */
		cdns_i2c_set_mode(CDNS_I2C_MODE_MASTER, id);
		return 0;
	}
	else
	{
		printk("warning!!!i2c bus is busy.\n");
		return -1;
	}
}
#endif

//added by fanzhaoxin for ring
static int cdns_get_ring(struct i2c_client *slave,unsigned long arg)
{
//printk("###zz debug###get ring\n");

	//added by fanzhaoxin
#if 1
	//printk("size is 0x%x\n",i2c_recv_ring.size);
	if (copy_to_user((ring_t *)arg, &i2c_recv_ring, sizeof(ring_t)))
	{
		return -EACCES;
	}
#endif

	return 0;
}

static int cdns_set_ring(struct i2c_client *slave,unsigned long arg)
{

	ring_t test={0,0,128};
//printk("###zz debug###set ring\n");

	//added by fanzhaoxin
#if 1
	if (copy_from_user(&test,(ring_t *)arg, sizeof(ring_t)))
	{
		return -EACCES;
	}
#endif
	i2c_recv_ring.tail=test.tail;

	return 0;
}


static const struct i2c_algorithm cdns_i2c_algo = {
	.master_xfer	= cdns_i2c_master_xfer,
	.functionality	= cdns_i2c_func,
	.get_ring	= cdns_get_ring,
	.set_ring	= cdns_set_ring,
#if IS_ENABLED(CONFIG_I2C_SLAVE)
	.reg_slave	= cdns_reg_slave,
	.unreg_slave	= cdns_unreg_slave,
#endif
};

/**
 * cdns_i2c_calc_divs - Calculate clock dividers
 * @f:		I2C clock frequency
 * @input_clk:	Input clock frequency
 * @a:		First divider (return value)
 * @b:		Second divider (return value)
 *
 * f is used as input and output variable. As input it is used as target I2C
 * frequency. On function exit f holds the actually resulting I2C frequency.
 *
 * Return: 0 on success, negative errno otherwise.
 */
static int cdns_i2c_calc_divs(unsigned long *f, unsigned long input_clk,
		unsigned int *a, unsigned int *b)
{
	unsigned long fscl = *f, best_fscl = *f, actual_fscl, temp;
	unsigned int div_a, div_b, calc_div_a = 0, calc_div_b = 0;
	unsigned int last_error, current_error;

	/* calculate (divisor_a+1) x (divisor_b+1) */
	temp = input_clk / (22 * fscl);

	/*
	 * If the calculated value is negative or 0, the fscl input is out of
	 * range. Return error.
	 */
	if (!temp || (temp > (CDNS_I2C_DIVA_MAX * CDNS_I2C_DIVB_MAX)))
		return -EINVAL;

	last_error = -1;
	for (div_a = 0; div_a < CDNS_I2C_DIVA_MAX; div_a++) {
		div_b = DIV_ROUND_UP(input_clk, 22 * fscl * (div_a + 1));

		if ((div_b < 1) || (div_b > CDNS_I2C_DIVB_MAX))
			continue;
		div_b--;

		actual_fscl = input_clk / (22 * (div_a + 1) * (div_b + 1));

		if (actual_fscl > fscl)
			continue;

		current_error = ((actual_fscl > fscl) ? (actual_fscl - fscl) :
							(fscl - actual_fscl));

		if (last_error > current_error) {
			calc_div_a = div_a;
			calc_div_b = div_b;
			best_fscl = actual_fscl;
			last_error = current_error;
		}
	}

	*a = calc_div_a;
	*b = calc_div_b;
	*f = best_fscl;

	return 0;
}

/**
 * cdns_i2c_setclk - This function sets the serial clock rate for the I2C device
 * @clk_in:	I2C clock input frequency in Hz
 * @id:		Pointer to the I2C device structure
 *
 * The device must be idle rather than busy transferring data before setting
 * these device options.
 * The data rate is set by values in the control register.
 * The formula for determining the correct register values is
 *	Fscl = Fpclk/(22 x (divisor_a+1) x (divisor_b+1))
 * See the hardware data sheet for a full explanation of setting the serial
 * clock rate. The clock can not be faster than the input clock divide by 22.
 * The two most common clock rates are 100KHz and 400KHz.
 *
 * Return: 0 on success, negative error otherwise
 */
static int cdns_i2c_setclk(unsigned long clk_in, struct cdns_i2c *id)
{
	unsigned int div_a, div_b;
	unsigned int ctrl_reg;
	int ret = 0;
	unsigned long fscl = id->i2c_clk;

	ret = cdns_i2c_calc_divs(&fscl, clk_in, &div_a, &div_b);
	if (ret)
		return ret;

	ctrl_reg = id->ctrl_reg;
	ctrl_reg &= ~(CDNS_I2C_CR_DIVA_MASK | CDNS_I2C_CR_DIVB_MASK);
	ctrl_reg |= ((div_a << CDNS_I2C_CR_DIVA_SHIFT) |
			(div_b << CDNS_I2C_CR_DIVB_SHIFT));
	id->ctrl_reg = ctrl_reg;
	return 0;
}

/**
 * cdns_i2c_clk_notifier_cb - Clock rate change callback
 * @nb:		Pointer to notifier block
 * @event:	Notification reason
 * @data:	Pointer to notification data object
 *
 * This function is called when the cdns_i2c input clock frequency changes.
 * The callback checks whether a valid bus frequency can be generated after the
 * change. If so, the change is acknowledged, otherwise the change is aborted.
 * New dividers are written to the HW in the pre- or post change notification
 * depending on the scaling direction.
 *
 * Return:	NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
 *		to acknowledge the change, NOTIFY_DONE if the notification is
 *		considered irrelevant.
 */
static int cdns_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
		event, void *data)
{
	struct clk_notifier_data *ndata = data;
	struct cdns_i2c *id = to_cdns_i2c(nb);

	if (pm_runtime_suspended(id->dev))
		return NOTIFY_OK;

	switch (event) {
	case PRE_RATE_CHANGE:
	{
		unsigned long input_clk = ndata->new_rate;
		unsigned long fscl = id->i2c_clk;
		unsigned int div_a, div_b;
		int ret;

		ret = cdns_i2c_calc_divs(&fscl, input_clk, &div_a, &div_b);
		if (ret) {
			dev_warn(id->adap.dev.parent,
					"clock rate change rejected\n");
			return NOTIFY_STOP;
		}

		/* scale up */
		if (ndata->new_rate > ndata->old_rate)
			cdns_i2c_setclk(ndata->new_rate, id);

		return NOTIFY_OK;
	}
	case POST_RATE_CHANGE:
		id->input_clk = ndata->new_rate;
		/* scale down */
		if (ndata->new_rate < ndata->old_rate)
			cdns_i2c_setclk(ndata->new_rate, id);
		return NOTIFY_OK;
	case ABORT_RATE_CHANGE:
		/* scale up */
		if (ndata->new_rate > ndata->old_rate)
			cdns_i2c_setclk(ndata->old_rate, id);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

/**
 * cdns_i2c_runtime_suspend -  Runtime suspend method for the driver
 * @dev:	Address of the platform_device structure
 *
 * Put the driver into low power mode.
 *
 * Return: 0 always
 */
static int __maybe_unused cdns_i2c_runtime_suspend(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct cdns_i2c *xi2c = platform_get_drvdata(pdev);

	clk_disable(xi2c->clk);

	return 0;
}

/**
 * cdns_i2c_init -  Controller initialisation
 * @id:		Device private data structure
 *
 * Initialise the i2c controller.
 *
 */
static void cdns_i2c_init(struct cdns_i2c *id)
{
	cdns_i2c_writereg(id->ctrl_reg, CDNS_I2C_CR_OFFSET);
	/*
	 * Cadence I2C controller has a bug wherein it generates
	 * invalid read transaction after HW timeout in master receiver mode.
	 * HW timeout is not used by this driver and the interrupt is disabled.
	 * But the feature itself cannot be disabled. Hence maximum value
	 * is written to this register to reduce the chances of error.
	 */
	//cdns_i2c_writereg(CDNS_I2C_TIMEOUT_MAX, CDNS_I2C_TIME_OUT_OFFSET);
}

/**
 * cdns_i2c_runtime_resume - Runtime resume
 * @dev:	Address of the platform_device structure
 *
 * Runtime resume callback.
 *
 * Return: 0 on success and error value on error
 */
static int __maybe_unused cdns_i2c_runtime_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct cdns_i2c *xi2c = platform_get_drvdata(pdev);
	int ret;

	ret = clk_enable(xi2c->clk);
	if (ret) {
		dev_err(dev, "Cannot enable clock.\n");
		return ret;
	}
	cdns_i2c_init(xi2c);

	return 0;
}

/**
 * cdns_i2c_prepare_recovery - Withold recovery state
 * @adapter:    Pointer to i2c adapter
 *
 * This function is called to prepare for recovery.
 * It changes the state of pins from SCL/SDA to GPIO.
 */
static void cdns_i2c_prepare_recovery(struct i2c_adapter *adapter)
{
	struct cdns_i2c *p_cdns_i2c;

	p_cdns_i2c = container_of(adapter, struct cdns_i2c, adap);

	/* Setting pin state as gpio */
	pinctrl_select_state(p_cdns_i2c->pinctrl,
			p_cdns_i2c->pinctrl_pins_gpio);
}

/**
 * cdns_i2c_unprepare_recovery - Release recovery state
 * @adapter:    Pointer to i2c adapter
 *
 * This function is called on exiting recovery. It reverts
 * the state of pins from GPIO to SCL/SDA.
 */
static void cdns_i2c_unprepare_recovery(struct i2c_adapter *adapter)
{
	struct cdns_i2c *p_cdns_i2c;

	p_cdns_i2c = container_of(adapter, struct cdns_i2c, adap);

	/* Setting pin state to default(i2c) */
	pinctrl_select_state(p_cdns_i2c->pinctrl,
			p_cdns_i2c->pinctrl_pins_default);
}

/**
 * cdns_i2c_init_recovery_info  - Initialize I2C bus recovery
 * @pid:        Pointer to cdns i2c structure
 * @pdev:       Handle to the platform device structure
 *
 * This function does required initialization for i2c bus
 * recovery. It registers three functions for prepare,
 * recover and unprepare
 *
 * Return: 0 on Success, negative error otherwise.
 */
static int cdns_i2c_init_recovery_info(struct cdns_i2c *pid,
		struct platform_device *pdev)
{
	struct i2c_bus_recovery_info *rinfo = &pid->rinfo;

	pid->pinctrl_pins_default = pinctrl_lookup_state(pid->pinctrl,
			PINCTRL_STATE_DEFAULT);
	pid->pinctrl_pins_gpio = pinctrl_lookup_state(pid->pinctrl, "gpio");

	/* Fetches GPIO pins */
	rinfo->sda_gpio = of_get_named_gpio(pdev->dev.of_node, "sda-gpios", 0);
	rinfo->scl_gpio = of_get_named_gpio(pdev->dev.of_node, "scl-gpios", 0);

	/* if GPIO driver isn't ready yet, deffer probe */
	if (rinfo->sda_gpio == -EPROBE_DEFER ||
			rinfo->scl_gpio == -EPROBE_DEFER)
		return -EPROBE_DEFER;

	/* Validates fetched information */
	if (!gpio_is_valid(rinfo->sda_gpio) ||
			!gpio_is_valid(rinfo->scl_gpio) ||
			IS_ERR(pid->pinctrl_pins_default) ||
			IS_ERR(pid->pinctrl_pins_gpio)) {
		dev_dbg(&pdev->dev, "recovery information incomplete\n");
		return 0;
	}

	dev_dbg(&pdev->dev, "using scl-gpio %d and sda-gpio %d for recovery\n",
			rinfo->sda_gpio, rinfo->scl_gpio);

	rinfo->prepare_recovery     = cdns_i2c_prepare_recovery;
	rinfo->unprepare_recovery   = cdns_i2c_unprepare_recovery;
	rinfo->recover_bus          = i2c_generic_gpio_recovery;
	pid->adap.bus_recovery_info = rinfo;

	return 0;
}

static const struct dev_pm_ops cdns_i2c_dev_pm_ops = {
	SET_RUNTIME_PM_OPS(cdns_i2c_runtime_suspend,
			   cdns_i2c_runtime_resume, NULL)
};

static const struct cdns_platform_data r1p10_i2c_def = {
	.quirks = CDNS_I2C_BROKEN_HOLD_BIT,
};

static const struct of_device_id cdns_i2c_of_match[] = {
	{ .compatible = "cdns,i2c-r1p10", .data = &r1p10_i2c_def },
	{ .compatible = "cdns,i2c-r1p14",},
	{ /* end of table */ }
};
MODULE_DEVICE_TABLE(of, cdns_i2c_of_match);

/**
 * cdns_i2c_probe - Platform registration call
 * @pdev:	Handle to the platform device structure
 *
 * This function does all the memory allocation and registration for the i2c
 * device. User can modify the address mode to 10 bit address mode using the
 * ioctl call with option I2C_TENBIT.
 *
 * Return: 0 on success, negative error otherwise
 */
static int cdns_i2c_probe(struct platform_device *pdev)
{
	struct resource *r_mem;
	struct cdns_i2c *id;
	int ret;
	const struct of_device_id *match;

	id = devm_kzalloc(&pdev->dev, sizeof(*id), GFP_KERNEL);
	if (!id)
		return -ENOMEM;

	id->dev = &pdev->dev;
	platform_set_drvdata(pdev, id);

	match = of_match_node(cdns_i2c_of_match, pdev->dev.of_node);
	if (match && match->data) {
		const struct cdns_platform_data *data = match->data;
		id->quirks = data->quirks;
	}

	id->pinctrl = devm_pinctrl_get(&pdev->dev);
	if (!IS_ERR(id->pinctrl)) {
		ret = cdns_i2c_init_recovery_info(id, pdev);
		if (ret)
			return ret;
	}

	r_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	id->membase = devm_ioremap_resource(&pdev->dev, r_mem);
	if (IS_ERR(id->membase))
		return PTR_ERR(id->membase);

	id->irq = platform_get_irq(pdev, 0);

	id->adap.owner = THIS_MODULE;
	id->adap.dev.of_node = pdev->dev.of_node;
	id->adap.algo = &cdns_i2c_algo;
	id->adap.timeout = CDNS_I2C_TIMEOUT;
	id->adap.retries = 3;		/* Default retry value. */
	id->adap.algo_data = id;
	id->adap.dev.parent = &pdev->dev;
	init_completion(&id->xfer_done);
	snprintf(id->adap.name, sizeof(id->adap.name),
		 "Cadence I2C at %08lx", (unsigned long)r_mem->start);

	id->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(id->clk)) {
		dev_err(&pdev->dev, "input clock not found.\n");
		return PTR_ERR(id->clk);
	}
	ret = clk_prepare_enable(id->clk);
	if (ret)
		dev_err(&pdev->dev, "Unable to enable clock.\n");

	pm_runtime_set_autosuspend_delay(id->dev, CNDS_I2C_PM_TIMEOUT);
	pm_runtime_use_autosuspend(id->dev);
	pm_runtime_set_active(id->dev);
	pm_runtime_enable(id->dev);

	id->clk_rate_change_nb.notifier_call = cdns_i2c_clk_notifier_cb;
	if (clk_notifier_register(id->clk, &id->clk_rate_change_nb))
		dev_warn(&pdev->dev, "Unable to register clock notifier.\n");
	id->input_clk = clk_get_rate(id->clk);

	ret = of_property_read_u32(pdev->dev.of_node, "clock-frequency",
			&id->i2c_clk);
	if (ret || (id->i2c_clk > CDNS_I2C_SPEED_MAX))
		id->i2c_clk = CDNS_I2C_SPEED_DEFAULT;

#if IS_ENABLED(CONFIG_I2C_SLAVE)
	/* Set initial mode to master */
	id->dev_mode = CDNS_I2C_MODE_MASTER;
	id->slave_state = CDNS_I2C_SLAVE_STATE_IDLE;
#endif
	id->ctrl_reg = CDNS_I2C_CR_ACK_EN | CDNS_I2C_CR_NEA | CDNS_I2C_CR_MS;

	ret = cdns_i2c_setclk(id->input_clk, id);
	if (ret) {
		dev_err(&pdev->dev, "invalid SCL clock: %u Hz\n", id->i2c_clk);
		ret = -EINVAL;
		goto err_clk_dis;
	}

	ret = devm_request_irq(&pdev->dev, id->irq, cdns_i2c_isr, 0,
				 DRIVER_NAME, id);
	if (ret) {
		dev_err(&pdev->dev, "cannot get irq %d\n", id->irq);
		goto err_clk_dis;
	}

	cdns_i2c_init(id);

	dev_info(&pdev->dev, "%u kHz mmio %08lx irq %d\n",
		 id->i2c_clk / 1000, (unsigned long)r_mem->start, id->irq);

	ret = i2c_add_adapter(&id->adap);
	if (ret < 0)
		goto err_clk_dis;

	return 0;

err_clk_dis:
	clk_disable_unprepare(id->clk);
	pm_runtime_disable(&pdev->dev);
	pm_runtime_set_suspended(&pdev->dev);
	return ret;
}

/**
 * cdns_i2c_remove - Unregister the device after releasing the resources
 * @pdev:	Handle to the platform device structure
 *
 * This function frees all the resources allocated to the device.
 *
 * Return: 0 always
 */
static int cdns_i2c_remove(struct platform_device *pdev)
{
	struct cdns_i2c *id = platform_get_drvdata(pdev);

	pm_runtime_disable(&pdev->dev);
	pm_runtime_set_suspended(&pdev->dev);
	pm_runtime_dont_use_autosuspend(&pdev->dev);

	i2c_del_adapter(&id->adap);
	clk_notifier_unregister(id->clk, &id->clk_rate_change_nb);
	clk_disable_unprepare(id->clk);

	return 0;
}

static struct platform_driver cdns_i2c_drv = {
	.driver = {
		.name  = DRIVER_NAME,
		.of_match_table = cdns_i2c_of_match,
		.pm = &cdns_i2c_dev_pm_ops,
	},
	.probe  = cdns_i2c_probe,
	.remove = cdns_i2c_remove,
};

module_platform_driver(cdns_i2c_drv);

MODULE_AUTHOR("Xilinx Inc.");
MODULE_DESCRIPTION("Cadence I2C bus driver");
MODULE_LICENSE("GPL");

 

你可能感兴趣的:(Felven在职场)