在前文Linux/Android——input子系统核心 (三) 中概括了总体的结构,以及介绍了input核心的职责,其中有说道注册input设备时会去匹配已有的事件处理器handler,
而这个handler也是存放在一个链表里面的,这里介绍下input子系统中的事件处理input_handler机制.
撰写不易,转载需注明出处:http://blog.csdn.net/jscese/article/details/42238377#t6
/kernel/drivers/input下众多事件处理器handler其中的一个,可以看下源码/kernel/drivers/input/evdev.c中的模块init:
static int __init evdev_init(void)
{
return input_register_handler(&evdev_handler);
}
static struct input_handler evdev_handler = {
.event = evdev_event,
.connect = evdev_connect,
.disconnect = evdev_disconnect,
.fops = &evdev_fops,
.minor = EVDEV_MINOR_BASE,
.name = "evdev",
.id_table = evdev_ids,
};
可以看到上面的evdev handler 就是调用这个接口注册到input核心中的,同样evdev.c同目录下也还有其它的handler,有兴趣可以看看它们的init函数,都是会调用到这个接口去注册的.
/**
* input_register_handler - register a new input handler
* @handler: handler to be registered
*
* This function registers a new input handler (interface) for input
* devices in the system and attaches it to all input devices that
* are compatible with the handler.
*/
int input_register_handler(struct input_handler *handler)
{
struct input_dev *dev;
int retval;
retval = mutex_lock_interruptible(&input_mutex);
if (retval)
return retval;
INIT_LIST_HEAD(&handler->h_list);
if (handler->fops != NULL) {
if (input_table[handler->minor >> 5]) {
retval = -EBUSY;
goto out;
}
input_table[handler->minor >> 5] = handler; //给input.c定义的全局handler 数组赋值,evdev handler的次设备号为64,这里除以32,赋值在input_table[2]
}
list_add_tail(&handler->node, &input_handler_list); //添加进handler 链表
list_for_each_entry(dev, &input_dev_list, node) //同样遍历input_dev这个链表,依次调用下面的input_attach_handler去匹配input_dev,这个跟input_dev注册的时候的情形类似
input_attach_handler(dev, handler);
input_wakeup_procfs_readers();
out:
mutex_unlock(&input_mutex);
return retval;
}
input核心中保存的handler数组:
static struct input_handler *input_table[8];
这是保存注册到input核心中的handler数组,因为在之前input注册的时候注册的字符设备主设备号为13.字符设备的次设备号为0~255,可以有256个设备,
这里后面会看到一个handler可以connect处理32个input设备,所以input体系中,最多拥有8个handler
这个匹配过程和上一篇中的过程是一样的,最后匹配上的话会调用匹配上的handler 中connect指针指向的函数.
另外可以注意的是evdev是匹配所有设备的,因为:
static const struct input_device_id evdev_ids[] = {
{ .driver_info = 1 }, /* Matches all devices */
{ }, /* Terminating zero entry */
};
我这边调试的是usb触摸屏,所以用的是evdev的handler,下面看下evdev的connect.
注册的evdev_handler中connect指向的函数为evdev_connect:
/*
* Create new evdev device. Note that input core serializes calls
* to connect and disconnect so we don't need to lock evdev_table here.
*/
static int evdev_connect(struct input_handler *handler, struct input_dev *dev,
const struct input_device_id *id)
{
struct evdev *evdev;
int minor;
int error;
for (minor = 0; minor < EVDEV_MINORS; minor++)
if (!evdev_table[minor])
break;
if (minor == EVDEV_MINORS) {
pr_err("no more free evdev devices\n");
return -ENFILE;
}
// 可以看到这里evdev handler匹配连接好的设备都以evdev 类型存在这个evdev_table数组的,这个数组大小为32个,这就是我上面说到的,为什么只有8个handler
//这里是判断evdev的32个位置中是否有空
evdev = kzalloc(sizeof(struct evdev), GFP_KERNEL); //为上面定义的*evdev分配内存空间
if (!evdev)
return -ENOMEM;
INIT_LIST_HEAD(&evdev->client_list); //以下都是对这个 evdev的初始化了
spin_lock_init(&evdev->client_lock);
mutex_init(&evdev->mutex);
init_waitqueue_head(&evdev->wait);
dev_set_name(&evdev->dev, "event%d", minor); //给这个evdev命名
evdev->exist = true;
evdev->minor = minor; // 以minor为索引赋值
evdev->handle.dev = input_get_device(dev); //evdev中的handle变量的初始化 ,后面分析这个handle ,这里面保存的就是已经匹配成功的input_dev 和 handler
evdev->handle.name = dev_name(&evdev->dev);
evdev->handle.handler = handler;
evdev->handle.private = evdev;
evdev->dev.devt = MKDEV(INPUT_MAJOR, EVDEV_MINOR_BASE + minor);
evdev->dev.class = &input_class;
evdev->dev.parent = &dev->dev;
evdev->dev.release = evdev_free;
device_initialize(&evdev->dev);
error = input_register_handle(&evdev->handle); //把这个evdev中初始化好的handle 注册到input核心中去,代表一个匹配成功的组合
if (error)
goto err_free_evdev;
error = evdev_install_chrdev(evdev); //把这个初始化好的evdev添加到上面说到过的evdev_table数组,以minor索引序号
if (error)
goto err_unregister_handle;
error = device_add(&evdev->dev); //把这个device 添加到/sys/class/input/下面,所以我们可以看到/dev/input下面看到:event0~31 字样字符设备文件,这就是在上面命名的
if (error)
goto err_cleanup_evdev;
return 0;
err_cleanup_evdev:
evdev_cleanup(evdev);
err_unregister_handle:
input_unregister_handle(&evdev->handle);
err_free_evdev:
put_device(&evdev->dev);
return error;
}
这里的evdev变量的结构如下:
struct evdev
{
int open; //打开标志
int minor; //次设备号
struct input_handle handle; //包含的handle
wait_queue_head_t wait; //等待队列
struct evdev_client __rcu *grab; //强制绑定的evdev_client结构
struct list_head client_list; //evdev_client 链表,这说明一个evdev设备可以处理多个evdev_client,可以有多个进程访问evdev设备
spinlock_t client_lock; /* protects client_list */
struct mutex mutex;
struct device dev;
bool exist;
};
这个代表一个匹配成功的input dev和 handler组合,定义在input.h中,每个evdev中包含一个input_handle,并且注册到input核心中:
/**
* struct input_handle - links input device with an input handler
* @private: handler-specific data
* @open: counter showing whether the handle is 'open', i.e. should deliver
* events from its device
* @name: name given to the handle by handler that created it
* @dev: input device the handle is attached to
* @handler: handler that works with the device through this handle
* @d_node: used to put the handle on device's list of attached handles
* @h_node: used to put the handle on handler's list of handles from which
* it gets events
*/
struct input_handle {
void *private; //指向上面封装的evdev
int open;
const char *name;
struct input_dev *dev; //input 设备
struct input_handler *handler; // 一个input的handler
struct list_head d_node; //链表结构
struct list_head h_node;
};
input_register_handle:
看看这个handle的注册,不要和handler搞混淆了,这不是一个概念~
/**
* input_register_handle - register a new input handle
* @handle: handle to register
*
* This function puts a new input handle onto device's
* and handler's lists so that events can flow through
* it once it is opened using input_open_device().
*
* This function is supposed to be called from handler's
* connect() method.
*/
int input_register_handle(struct input_handle *handle)
{
struct input_handler *handler = handle->handler;
struct input_dev *dev = handle->dev; //取出两个成员
...
/*
* Filters go to the head of the list, normal handlers
* to the tail.
*/
if (handler->filter)
list_add_rcu(&handle->d_node, &dev->h_list);
else
list_add_tail_rcu(&handle->d_node, &dev->h_list);
//把这个handle的d_node 加到对应input_dev的h_list链表里面
...
list_add_tail_rcu(&handle->h_node, &handler->h_list);
//把这个handle的h_node 加到对应input_handler的h_list链表里面
...
}
这个注册是把handle 本身的链表加入到它自己的input_dev 以及 input_handler的h_list链表中,这样以后就可以通过h_list遍历到这个handle,
这样就实现了三者的绑定联系.
另外在evdev中还有个结构:
struct evdev_client {
unsigned int head; //buffer数组的索引头
unsigned int tail; //buffer数组的索引尾
unsigned int packet_head; /* [future] position of the first element of next packet */
spinlock_t buffer_lock; /* protects access to buffer, head and tail */
struct wake_lock wake_lock;
bool use_wake_lock;
char name[28];
struct fasync_struct *fasync; //异步通知函数
struct evdev *evdev; //包含一个evdev变量
struct list_head node; //链表
unsigned int bufsize;
struct input_event buffer[]; //input_event数据结构的数组,input_event代表一个事件,基本成员:类型(type),编码(code),值(value)
};
这个结构会在evdev被打开的时候 创建,这里关于evdev的初始以及在input系统中承接作用暂时介绍到这里,
前文 Linux/Android——输入子系统input_event传递 (二) 中有记录从设备驱动传递上来的event是怎么到input核心,然后接着往上传递的,接下来就是用到evdev传递了.下篇介绍.