步态识别问题简介

步态识别问题简介

任务介绍

步态识别是生物特征识别方法的一种。其基本目标是通过获取一段待检测行人正常行走的视频,与已经存储好的行人行走视屏做对比,找出待检测行人的对应于数据库中人物的身份。其优点在于检测的过程无感、非接触、不需要其它人为参与。

在数据库中存储的视频被称为gallery,用来作为测试输入、待匹配的视频成为prob。

GEI

步态识别任务的一个重要问题是特征的提取。为了用简单的方法提取出视屏中有用的信息,目前常用的方法是提取步态能量图(Gait Energy Image, GEI)。

其提取方法是:
1. 在视频中检测行人位置,使用分割/Matting/背景建模等方式得到行人的掩膜(mask),或行人轮廓(silhouette);
2. 将含有行人的部分图片切割出来,使用几何重心或者其他固定的点对各帧的掩膜进行对其;
3. 将各个帧的掩膜进行相加平均,即得到GEI。

其过程如图所示:

步态识别问题简介_第1张图片

步态识别问题简介_第2张图片

该方法较为简单,但是相比其他特征更加稳定和有效[1]。
一些文章也在GEI的基础上探索更优的特征表达。
如[2]中,作者使用三维卷积来处理视频中各帧的行人轮廓,同时在讨论中认为使用LSTM等模型来处理此时序信息会更加有效。
[3]中作者使用GAN生成跨视角的GEI,以较偏的、步态信息较少的视角的GEI作为输入,生成行人侧面(90°)的GEI。

常见数据库介绍

CASIA-B

该数据库[4]是2005年提出的。数据库中包含了124个不同身份的行人,包括31位女性和93位男性。针对每个行人,数据库包含了从11个视角拍摄的视频(0°,18°,36°,…,180°)。每个视角包括了10个视频。因此每个行人共有110个视频与其对应。

这10个视频里,6个是正常视频(简称为NM,其中4个为gallery,2个为prob),2个穿大衣视频(简称为CL,均为prob),2个带包视频(简称为BG,均为prob)。

该数据库的特点是视角最多,而且包含了不同的行走状态(穿衣与带包)。

OU-ISIR

该数据库[1]共有4007个不同的行人。每个人有2个视频,一个作gallery,一个作prob。总共有四个视角(55°, 65°, 75°, 85°),可能不同人的视角不同。

该数据库的特点是行人身份种类众多,但是每个人的视频的视角、行走状态差别较小。

USF

该数据库[5]共有122个人。每个个体不同的视频有五个不同因素:2种鞋子种类、2种拿东西的状态、2种地面种类、2种视角、2种录制时间。
这五种因素相互排列组合,组成32个视频。

该数据库在室外复杂场景录制,因此GEI更为嘈杂。

步态识别问题简介_第3张图片

Reference

[1] H. Iwama, M. Okumura, Y. Makihara, and Y. Yagi, “The OU-ISIR gait database: Comprising the large population dataset and performance evaluation of gait recognition,” IEEE Trans. Information Forensics and Security, vol. 7(5), pp. 1511–1521, 2012.

[2] Z. Wu, Y. Huang, L. Wang, X. Wang, and T. Tan, “A Comprehensive Study on Cross-View Gait Based Human Identification with Deep CNNs”, IEEE Trans. Pattern Analysis and Machine Intelligence, 2016.

[3] S. Yu, H. Chen, E.G. Reyes and N. Poh, “GaitGAN: Invariant Gait Feature Extraction Using Generative Adversarial Networks”, in CVPR 2017 Biometrics Workshop, 2017.

[4] S. Yu, D. Tan, and T. Tan. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In ICPR, pages 441–444, August 2006.

[5] S. Sarkar, P. J. Phillips, Z. Liu, I. R. Vega, P. Grother, and K. W. Bowyer,“The humanID gait challenge problem: Data sets, performance, and analysis,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.
27(2), pp. 162–177, Feb. 2005.

你可能感兴趣的:(深度学习论文笔记)