numpy.diff(a, n=1,axis=-1)
沿着指定轴计算第N维的离散差值
参数:
a:输入矩阵
n:可选,代表要执行几次差值
axis:默认是最后一个
总结:从输出结果可以看出,其实diff函数就是执行的是后一个元素减去前一个元素。
import numpy as np
A = np.arange(2 , 14).reshape((3 , 4))
A[1 , 1] = 8
print('A:' , A)
# A: [[ 2 3 4 5]
# [ 6 8 8 9]
# [10 11 12 13]]
print(np.diff(A))
# [[1 1 1]
# [2 0 1]
# [1 1 1]]
cv2.drawContours(mask, [c], -1, 255, -1)
# 最后一个-1表示填充曲线,正数代表线条宽度
def aa(a, b, c):
return a + b + c
# 1
print(aa(3, 4, 5)) # 返回值为:12
# 2
b = [1, 2, 3]
print(aa(*b)) # print(aa(b)) # 错误
# 返回值为:6
# “*”作用:拆开数列’b’的数值作为位置参数,并把这些位置参数传给函数’aa’来调用
# 3
b = [5, 3]
a = 1
print(aa(a, *b)) # 9
def xx(*args):
print(*args)
print(args)
def yy(*args):
return args*2
xx(1, 2, 3) # 1 2 3 和 (1, 2, 3)
print(yy(1, 2, 3)) # (1, 2, 3, 1, 2, 3)
def abc(x, *y):
print(x)
print(*y)
abc(1, 4, 2) # 分别打印出1 和 4 2
# “**”作用:它unpack字典,并将字典中的数据项作为键值参数传给函数。
def xv(a, b, c):
print(a)
print(b)
print(c)
xv(1, **{"b": 1, "c": 2}) # b和c都要对应函数
# 结果为:1 1 2
def xc(**c):
print(c)
# print(**c) 报错
xc(b=1, c=2) # {'b': 1, 'c': 2}
# 导入工具包
import numpy as np
import argparse
import imutils
import cv2
# 设置参数
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="path to the input image")
args = vars(ap.parse_args())
# 正确答案
ANSWER_KEY = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1}
def order_points(pts):
# 一共4个坐标点
rect = np.zeros((4, 2), dtype="float32")
print(rect)
# 按顺序找到对应坐标0123分别是 左上,右上,右下,左下
# 计算左上,右下
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
# 计算右上和左下
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def four_point_transform(image, pts):
# 获取输入坐标点
rect = order_points(pts)
(tl, tr, br, bl) = rect
# 计算输入的w和h值
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
# 变换后对应坐标位置
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype="float32")
# 计算变换矩阵
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
# 关键字参数src, M, dsize分别表示源图像,变换矩阵,以及输出图像的大小
return warped
def sort_contours(cnts, method="left-to-right"):
reverse = False
i = 0
if method == "right-to-left" or method == "bottom-to-top":
reverse = True
if method == "top-to-bottom" or method == "bottom-to-top":
i = 1
boundingBoxes = [cv2.boundingRect(c) for c in cnts]
(cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
key=lambda b: b[1][i], reverse=reverse))
return cnts, boundingBoxes
def cv_show(name, img):
cv2.imshow(name, img)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 预处理
image = cv2.imread(args["image"])
contours_img = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
cv_show('blurred', blurred)
edged = cv2.Canny(blurred, 75, 200) # 做canny之前都要高斯一下
cv_show('edged', edged)
# 轮廓检测
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, # 灰度图,显示最外面的轮廓,如果只有一个就是1,如果有并列的就是2个,以此类推
cv2.CHAIN_APPROX_SIMPLE)[1]
# 由于其他轮廓都是在这个轮廓里面,所以使用cv2.RETR_EXTERNAL时,其他轮廓显示不出来。
cv2.drawContours(contours_img, cnts, -1, (0, 0, 255), 3)
cv_show('contours_img', contours_img)
docCnt = None
# 确保检测到了
if len(cnts) > 0:
# 根据轮廓大小进行排序
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
# 遍历每一个轮廓
for c in cnts:
# 近似
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.02 * peri, True)
# cv2.boundingRect()使用与框出正的矩形,此处矩形斜着的而且不一定是矩形,
# 此处只想让边直一点
# print(approx) # [[[131, 206]], [[119, 617]], [[448, 614]], [[430, 208]]]
# print(approx.reshape(4, 2)) # [[131, 206], [119, 617], [448, 614], [430, 208]]
# 准备做透视变换
if len(approx) == 4:
docCnt = approx
break
# 执行透视变换
warped = four_point_transform(gray, docCnt.reshape(4, 2))
cv_show('warped', warped)
# Otsu's 阈值处理
thresh = cv2.threshold(warped, 0, 255,
cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
cv_show('thresh', thresh)
thresh_Contours = thresh.copy()
# 找到每一个圆圈轮廓
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[1]
thresh_Contours = cv2.cvtColor(thresh_Contours, cv2.COLOR_GRAY2BGR)
cv2.drawContours(thresh_Contours, cnts, -1, (0, 0, 255), 3) # 想要显示出来,得加上面这条语句
cv_show('thresh_Contours', thresh_Contours)
questionCnts = []
# 遍历
for c in cnts:
# 计算比例和大小
(x, y, w, h) = cv2.boundingRect(c)
ar = w / float(h)
max_h, max_w = warped.shape[0], warped.shape[1]
# 法1
# 根据实际情况指定标准,指定出比例会更加灵活
if w/max_w >= 0.10 and h/max_h >= 0.08 and ar >= 0.9 and ar <= 1.1:
questionCnts.append(c)
# # 法2
# # 根据实际情况指定标准
# if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1:
# questionCnts.append(c)
# 按照从上到下进行排序
# questionCnts一共有5*5个圈,按坐标从上到下进行顺序,
questionCnts = sort_contours(questionCnts,
method="top-to-bottom")[0]
correct = 0
# 每排有5个选项
print(np.arange(0, len(questionCnts), 5)) # [0 5 10 15 20]
for (q, i) in enumerate(np.arange(0, len(questionCnts), 5)):
# 排序
cnts = sort_contours(questionCnts[i:i + 5])[0] # 一排5个
bubbled = None
# 遍历每一个结果
for (j, c) in enumerate(cnts):
# 使用mask来判断结果
mask = np.zeros(thresh.shape, dtype="uint8")
cv2.drawContours(mask, [c], -1, 255, -1) # 最后一个-1表示填充曲线,正数代表线条宽度
# cv_show('mask', mask)
# 通过计算非零点数量来算是否选择这个答案
# cv_show("the", thresh)
mask = cv2.bitwise_and(thresh, thresh, mask=mask)
cv_show("mask", mask)
total = cv2.countNonZero(mask) # 统计非0个数
# 通过阈值判断
if bubbled is None or total > bubbled[0]:
bubbled = (total, j)
# 对比正确答案
color = (0, 0, 255)
k = ANSWER_KEY[q]
# 判断正确
if k == bubbled[1]:
color = (0, 255, 0)
correct += 1
# 绘图
l = bubbled[1]
if len(warped.shape) == 2:
warped = cv2.cvtColor(warped, cv2.COLOR_GRAY2BGR)
cv2.drawContours(warped, [cnts[k]], -1, color, 3) # 圈出正确的答案,如果答案正确则圈为绿色,如果错误则圈为红色。
# cv2.drawContours(warped, [cnts[l]], -1, color, 3) # 圈出自己的答案,如果答案正确则圈为绿色,如果错误则圈为红色。
cv_show("warped", warped)
score = (correct / 5.0) * 100
print("[INFO] score: {:.2f}%".format(score))
cv2.putText(warped, "{:.2f}%".format(score), (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
cv_show("Original", image)
cv_show("Exam", warped)
cv2.waitKey(0)