Hadoop-HA集群详细配置Hadoop3.1.3版本(HDFS-HA集群、YARN-HA集群)

Hadoop-HA集群配置

文章目录

    • Hadoop-HA集群配置
      • 1 环境准备
      • 2 规划集群
      • 3 配置Zookeeper集群
    • HDFS-HA配置
      • 4 配置HDFS-HA集群
      • 5 启动HDFS-HA集群
      • 6 配置HDFS-HA自动故障转移
    • YARN-HA配置
      • 7 YARN-HA工作机制
      • 8 配置YARN-HA集群

1 环境准备

(1)修改IP

(2)修改主机名及主机名和IP地址的映射

(3)关闭防火墙

(4)ssh免密登录

(5)安装JDK,配置环境变量等

2 规划集群

hadoop102 hadoop103 hadoop104
NameNode NameNode NameNode
ZKFC ZKFC ZKFC
JournalNode JournalNode JournalNode
DataNode DataNode DataNode
ZK ZK ZK
ResourceManager ResourceManager ResourceManager
NodeManager NodeManager NodeManager

3 配置Zookeeper集群

1)集群规划

在hadoop102、hadoop103和hadoop104三个节点上部署Zookeeper。

2)解压安装

(1)解压Zookeeper安装包到/opt/module/目录下

[qinjl@hadoop102 software]$ tar -zxvf zookeeper-3.5.7.tar.gz -C /opt/module/

(2)在/opt/module/zookeeper-3.5.7/这个目录下创建zkData

[qinjl@hadoop102 zookeeper-3.5.7]$ mkdir -p zkData

(3)重命名/opt/module/zookeeper-3.4.14/conf这个目录下的zoo_sample.cfg为zoo.cfg

[qinjl@hadoop102 conf]$ mv zoo_sample.cfg zoo.cfg

3)配置zoo.cfg文件

(1)具体配置

dataDir=/opt/module/zookeeper-3.5.7/zkData

增加如下配置
#######################cluster##########################
server.2=hadoop102:2888:3888
server.3=hadoop103:2888:3888
server.4=hadoop104:2888:3888

(2)配置参数解读

Server.A=B:C:D
A:是一个数字,表示这个是第几号服务器;
B:是这个服务器的IP地址;
C:是这个服务器与集群中的Leader服务器交换信息的端口;
D:是万一集群中的Leader服务器挂了,需要一个端口来重新进行选举,选出一个新的Leader,而这个端口就是用来执行选举时服务器相互通信的端口。

集群模式下配置一个文件myid,这个文件在dataDir目录下,这个文件里面有一个数据就是A的值,Zookeeper启动时读取此文件,拿到里面的数据与zoo.cfg里面的配置信息比较从而判断到底是哪个server。

4)集群操作

(1)在/opt/module/zookeeper-3.5.7/zkData目录下创建一个myid的文件

[qinjl@hadoop102 zkData]$ touch myid

添加myid文件,注意一定要在linux里面创建,在notepad++里面很可能乱码

(2)编辑myid文件

[qinjl@hadoop102 zkData]$ vi myid
在文件中添加与server对应的编号:如2

(3)拷贝配置好的zookeeper到其他机器上

[qinjl@hadoop102 module]$ scp -r zookeeper-3.5.7/ qinjl@hadoop103:/opt/module/
[qinjl@hadoop102 module]$ scp -r zookeeper-3.5.7/ qinjl@hadoop104:/opt/module/

并分别修改myid文件中内容为3、4

(4)分别启动zookeeper

[qinjl@hadoop102 zookeeper-3.5.7]$ bin/zkServer.sh start
[qinjl@hadoop103 zookeeper-3.5.7]$ bin/zkServer.sh start
[qinjl@hadoop104 zookeeper-3.5.7]$ bin/zkServer.sh start

(5)查看状态

[qinjl@hadoop102 zookeeper-3.5.7]$ bin/zkServer.sh status
JMX enabled by default
Using config: /opt/module/zookeeper-3.5.7/bin/../conf/zoo.cfg
Mode: follower

[qinjl@hadoop103 zookeeper-3.5.7]$ bin/zkServer.sh status
JMX enabled by default
Using config: /opt/module/zookeeper-3.5.7/bin/../conf/zoo.cfg
Mode: leader

[qinjl@hadoop104 zookeeper-3.5.7]$ bin/zkServer.sh status
JMX enabled by default
Using config: /opt/module/zookeeper-3.5.7/bin/../conf/zoo.cfg
Mode: follower

HDFS-HA配置

4 配置HDFS-HA集群

1)官方地址:http://hadoop.apache.org/

2)在opt目录下创建一个ha文件夹

[qinjl@hadoop102 ~]$ cd /opt
[qinjl@hadoop102 opt]$ sudo mkdir ha
[qinjl@hadoop102 opt]$ sudo chown qinjl:qinjl /opt/ha

3)将/opt/module/下的 hadoop-3.1.3拷贝到/opt/ha目录下(记得删除data 和 log目录

[qinjl@hadoop102 opt]$ cp -r /opt/module/hadoop-3.1.3 /opt/ha/

4)配置hadoop-env.sh

export JAVA_HOME=/opt/module/jdk1.8.0_212

5)配置core-site.xml

<configuration>

  <property>
    <name>fs.defaultFSname>
    <value>hdfs://myclustervalue>
  property>

  <property>
    <name>hadoop.tmp.dirname>
    <value>/opt/ha/hadoop-3.1.3/datavalue>
  property>
configuration>

6)配置hdfs-site.xml

<configuration>

  <property>
    <name>dfs.namenode.name.dirname>
    <value>file://${hadoop.tmp.dir}/namevalue>
  property>

  <property>
    <name>dfs.datanode.data.dirname>
    <value>file://${hadoop.tmp.dir}/datavalue>
  property>

  <property>
    <name>dfs.journalnode.edits.dirname>
    <value>${hadoop.tmp.dir}/jnvalue>
  property>

  <property>
    <name>dfs.nameservicesname>
    <value>myclustervalue>
  property>

  <property>
    <name>dfs.ha.namenodes.myclustername>
    <value>nn1,nn2,nn3value>
  property>

  <property>
    <name>dfs.namenode.rpc-address.mycluster.nn1name>
    <value>hadoop102:8020value>
  property>
  <property>
    <name>dfs.namenode.rpc-address.mycluster.nn2name>
    <value>hadoop103:8020value>
  property>
  <property>
    <name>dfs.namenode.rpc-address.mycluster.nn3name>
    <value>hadoop104:8020value>
  property>

  <property>
    <name>dfs.namenode.http-address.mycluster.nn1name>
    <value>hadoop102:9870value>
  property>
  <property>
    <name>dfs.namenode.http-address.mycluster.nn2name>
    <value>hadoop103:9870value>
  property>
  <property>
    <name>dfs.namenode.http-address.mycluster.nn3name>
    <value>hadoop104:9870value>
  property>

  <property>
	<name>dfs.namenode.shared.edits.dirname>
	<value>qjournal://hadoop102:8485;hadoop103:8485;hadoop104:8485/myclustervalue>
  property>

  <property>
    <name>dfs.client.failover.proxy.provider.myclustername>
    <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvidervalue>
  property>

  <property>
    <name>dfs.ha.fencing.methodsname>
    <value>sshfencevalue>
  property>

  <property>
    <name>dfs.ha.fencing.ssh.private-key-filesname>
    <value>/home/qinjl/.ssh/id_rsavalue>
  property>
configuration>

7)分发配置好的hadoop环境到其他节点

5 启动HDFS-HA集群

1)将HADOOP_HOME环境变量更改到HA目录

[qinjl@hadoop102 ~]$ sudo vim /etc/profile.d/my_env.sh

将HADOOP_HOME部分改为如下
##HADOOP_HOME
export HADOOP_HOME=/opt/ha/hadoop-3.1.3
export PATH=$PATH:$HADOOP_HOME/bin
export PATH=$PATH:$HADOOP_HOME/sbin

2)在各个JournalNode节点上,输入以下命令启动journalnode服务

[qinjl@hadoop102 ~]$ hdfs --daemon start journalnode
[qinjl@hadoop103 ~]$ hdfs --daemon start journalnode
[qinjl@hadoop104 ~]$ hdfs --daemon start journalnode

3)在[nn1]上,对其进行格式化,并启动

[qinjl@hadoop102 ~]$ hdfs namenode -format
[qinjl@hadoop102 ~]$ hdfs --daemon start namenode

4)在[nn2]和[nn3]上,同步nn1的元数据信息

[qinjl@hadoop103 ~]$ hdfs namenode -bootstrapStandby
[qinjl@hadoop104 ~]$ hdfs namenode -bootstrapStandby

5)启动[nn2]和[nn3]

[qinjl@hadoop103 ~]$ hdfs --daemon start namenode
[qinjl@hadoop104 ~]$ hdfs --daemon start namenode

6)查看web页面显示

全部节点的状态为standby

7)在所有节点上,启动datanode

[qinjl@hadoop102 ~]$ hdfs --daemon start datanode
[qinjl@hadoop103 ~]$ hdfs --daemon start datanode
[qinjl@hadoop104 ~]$ hdfs --daemon start datanode

8)将[nn1]切换为Active

[qinjl@hadoop102 ~]$ hdfs haadmin -transitionToActive nn1

9)查看是否Active

[qinjl@hadoop102 ~]$ hdfs haadmin -getServiceState nn1

6 配置HDFS-HA自动故障转移

1)具体配置

(1)在hdfs-site.xml中增加


<property>
	<name>dfs.ha.automatic-failover.enabledname>
	<value>truevalue>
property>

(2)在core-site.xml文件中增加


<property>
	<name>ha.zookeeper.quorumname>
	<value>hadoop102:2181,hadoop103:2181,hadoop104:2181value>
property>

(3)修改后分发配置文件

[qinjl@hadoop102 etc]$ pwd
/opt/ha/hadoop-3.1.3/etc

[qinjl@hadoop102 etc]$ xsync hadoop/

2)启动

(1)关闭所有HDFS服务:

[qinjl@hadoop102 ~]$ stop-dfs.sh

(2)启动Zookeeper集群:

[qinjl@hadoop102 ~]$ zkServer.sh start
[qinjl@hadoop103 ~]$ zkServer.sh start
[qinjl@hadoop104 ~]$ zkServer.sh start

(3)启动Zookeeper以后,然后再初始化HA在Zookeeper中状态:

[qinjl@hadoop102 ~]$ hdfs zkfc -formatZK

(4)启动HDFS服务:

[qinjl@hadoop102 ~]$ start-dfs.sh

(5)可以去zkCli.sh客户端查看Namenode选举锁节点内容:

[zk: localhost:2181(CONNECTED) 7] get -s /hadoop-ha/mycluster/ActiveStandbyElectorLock

	myclusternn2	hadoop103 �>(�>
cZxid = 0x10000000b
ctime = Tue Jul 14 17:00:13 CST 2020
mZxid = 0x10000000b
mtime = Tue Jul 14 17:00:13 CST 2020
pZxid = 0x10000000b
cversion = 0
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x40000da2eb70000
dataLength = 33
numChildren = 0

3)验证

(1)将Active NameNode进程kill,查看网页端三台Namenode的状态变化

[qinjl@hadoop102 ~]$ kill -9 namenode的进程id

YARN-HA配置

7 YARN-HA工作机制

1)官方文档:

http://hadoop.apache.org/docs/r3.1.3/hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.html

2)YARN-HA工作机制

Hadoop-HA集群详细配置Hadoop3.1.3版本(HDFS-HA集群、YARN-HA集群)_第1张图片

8 配置YARN-HA集群

1)具体配置

(1)yarn-site.xml

<configuration>
    <property>
        <name>yarn.nodemanager.aux-servicesname>
        <value>mapreduce_shufflevalue>
    property>

    
    <property>
        <name>yarn.resourcemanager.ha.enabledname>
        <value>truevalue>
    property>
 
    
    <property>
        <name>yarn.resourcemanager.cluster-idname>
        <value>cluster-yarn1value>
    property>
    
    <property>
        <name>yarn.resourcemanager.ha.rm-idsname>
        <value>rm1,rm2,rm3value>
	property>
    

    
        <property>
            <name>yarn.resourcemanager.hostname.rm1name>
            <value>hadoop102value>
    property>
    
    <property>
         <name>yarn.resourcemanager.webapp.address.rm1name>
         <value>hadoop102:8088value>
    property>
    
    <property>
         <name>yarn.resourcemanager.address.rm1name>
         <value>hadoop102:8032value>
    property>
    
    <property>
         <name>yarn.resourcemanager.scheduler.address.rm1name>  
         <value>hadoop102:8030value>
    property>
      
    <property>
         <name>yarn.resourcemanager.resource-tracker.address.rm1name>
         <value>hadoop102:8031value>
    property>

    
    <property>
        <name>yarn.resourcemanager.hostname.rm2name>
        <value>hadoop103value>
    property>
    <property>
         <name>yarn.resourcemanager.webapp.address.rm2name>
         <value>hadoop103:8088value>
    property>
    <property>
         <name>yarn.resourcemanager.address.rm2name>
         <value>hadoop103:8032value>
    property>
    <property>
         <name>yarn.resourcemanager.scheduler.address.rm2name>
         <value>hadoop103:8030value>
    property>
    <property>
         <name>yarn.resourcemanager.resource-tracker.address.rm2name>
         <value>hadoop103:8031value>
    property>

	
    <property>
        <name>yarn.resourcemanager.hostname.rm3name>
        <value>hadoop104value>
    property>
    
    <property>
         <name>yarn.resourcemanager.webapp.address.rm3name>
         <value>hadoop104:8088value>
    property>
    
    <property>
         <name>yarn.resourcemanager.address.rm3name>
         <value>hadoop104:8032value>
    property>
    
    <property>
         <name>yarn.resourcemanager.scheduler.address.rm3name>  
         <value>hadoop104:8030value>
    property>
      
    <property>
         <name>yarn.resourcemanager.resource-tracker.address.rm3name>
         <value>hadoop104:8031value>
    property>
 
     
    <property>
        <name>yarn.resourcemanager.zk-addressname>
        <value>hadoop102:2181,hadoop103:2181,hadoop104:2181value>
    property>

     
    <property>
        <name>yarn.resourcemanager.recovery.enabledname>
        <value>truevalue>
    property>
 
     
    <property>
        <name>yarn.resourcemanager.store.classname>
        <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStorevalue>
	property>

 <property>
        <name>yarn.nodemanager.env-whitelistname>
 <value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOMEvalue>
 property>

configuration>

(2)同步更新其他节点的配置信息,分发配置文件

[qinjl@hadoop102 etc]$ xsync hadoop/

2)启动hdfs

[qinjl@hadoop102 ~]$ start-dfs.sh

3)启动YARN

(1)在hadoop102或者hadoop103、hodoop104中执行:

[qinjl@hadoop102 ~]$ start-yarn.sh

(2)查看服务状态

[qinjl@hadoop102 ~]$ yarn rmadmin -getServiceState rm1

(3)可以去zkCli.sh客户端查看ResourceManager选举锁节点内容:

[qinjl@hadoop102 ~]$ zkCli.sh
[zk: localhost:2181(CONNECTED) 16] get -s /yarn-leader-election/cluster-yarn1/ActiveStandbyElectorLock

cluster-yarn1rm1
cZxid = 0x100000022
ctime = Tue Jul 14 17:06:44 CST 2020
mZxid = 0x100000022
mtime = Tue Jul 14 17:06:44 CST 2020
pZxid = 0x100000022
cversion = 0
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x30000da33080005
dataLength = 20
numChildren = 0

你可能感兴趣的:(Hadoop,hadoop,分布式,大数据,zookeeper)