高阶奇异值分解(HOSVD)理解

在基于情境上下文的推荐系统中,HOSVD是常用方法,这里通过一篇文章简单理解下HOSVD。

1、适用场景:

This decomposition plays an important role in various domains, such as:
? Spectral analysis,
? Non-linear modeling,
? Communication and Radar processing,
? blind source separation,
? image processing,
? biomedical applications (magnetic resonance imaging and electrocardiography),
? web search,
? computer facial recognition,
? handwriting analysis,

2、HOSVD定义:

高阶奇异值分解(HOSVD)理解_第1张图片

3、张量分解

1)standard unfoldings

高阶奇异值分解(HOSVD)理解_第2张图片

巨大的计算成本。

2)Higer PCA

高阶奇异值分解(HOSVD)理解_第3张图片

3)Kernel decomposition in Volterra series

高阶奇异值分解(HOSVD)理解_第4张图片

4)1-D harmonic retrieval problem

高阶奇异值分解(HOSVD)理解_第5张图片

5)Oblique unfoldings to decrease the complexity

高阶奇异值分解(HOSVD)理解_第6张图片


6)Complexities of the HOSVD algorithms

高阶奇异值分解(HOSVD)理解_第7张图片

HOSVD主要在于张量分解方法。

4、展望

•Structured tensors imply strongly structured modes if oblique unfoldings are used. Not true for standard unfoldings !
• Increasing the structure of the modes allows to exploit fast techniques from numerical linear algebra based on - the column-redundancy property
- fast products vector/matrix for Toeplitz or Hankel matrices.
• Fastest implementation of the rank-truncated HOSVD (dedicated to Hankel tensors) has a quasilinear complexity w.r.t. the tensor dimensions.

• Generalize to tensors of order > 3.

• Extend to other HOSVD (constrained HOSVD, cross-HOSVD,...)?


最基础的可以参考维基https://en.wikipedia.org/wiki/Higher-order_singular_value_decomposition

你可能感兴趣的:(Algorithm)