转载
在一些业务场景中,会使用NOT EXISTS语句确保返回数据不存在于特定集合,部分同事会发现NOT EXISTS有些场景性能较差,甚至有些网上谣言说”NOT EXISTS不走索引”,哪对于NOT EXISTS语句,我们如何优化呢?
##========================================================##
以今天优化的SQL为例,优化前SQL为:
SELECT count(1)
FROM t_monitor m
WHERE NOT exists
(SELECT 1
FROM t_alarm_realtime AS a
WHERE a.resource_id=m.resource_id
AND a.resource_type=m.resource_type
AND a.monitor_name=m.monitor_name)
我们使用LEFT JOIN方式进行优化,优化后SQL为:
SELECT count(1)
FROM t_monitor m
LEFT JOIN t_alarm_realtime AS a
ON a.resource_id=m.resource_id
AND a.resource_type=m.resource_type
AND a.monitor_name=m.monitor_name
WHERE a.resource_id is NULL
优化效果:
优化前执行时间29秒以上,优化后1.2秒,优化提升25倍
##========================================================##
哪NOT EXISTS真的不走索引么?查看两种SQL的执行计划:
使用NOT EXIST方式的执行计划:
使用LEFT JOIN方式的执行计划:
从执行计划来看,两个表都使用了索引,区别在于NOT EXISTS使用“DEPENDENT SUBQUERY”方式,而LEFT JOIN使用普通表关联的方式。
##========================================================##
通过MySQL提供的Profiling方式来查看两种方式的执行过程
使用NOT EXIST方式的执行过程
使用LEFT JOIN方式的执行过程:
从执行过程来看,LEFT JOIN方式的主要消耗在Sending data一项上(1.2s),而NOT EXISTS方式主要消耗在executeing和Sending data两项上,受限于Profiling只存放100行记录缘故,从Profiling中只能看到47个” executeing和Sending data”的组合项(每个组合项约50us),通过执行计划看出,外表t_monitor的数据量为578436行,忽略统计信息不准情况下,使用NOT EXISTS方式应该会产生578436个” executeing和Sending data”的组合项,总计消耗时间=50μs*578436=28921800us=28.92s。
从上面执行过程可以推断出:
使用NOT EXISTS方式的执行性能严重依赖于NOT EXISTS子查询的执行次数即外层查询结果集的数据量。
1、 当外层查询结果集的数据量N较小时执行性能较好,如有N=10执行时间为50μs*10=500us=0.005s,再加上一些额外消耗,执行结果也能在0.01秒或10毫秒内范围,这个响应时间应该能被大部分应用程序接受。
2、 当外层程勋结果集的数据量N较大甚至上千万数据量时,NOT EXISTS的查询性能会变得非常糟糕,甚至会大量消耗服务器IO和CPU资源从而影响其他业务正常运行。
除上述问题外,在优化过程中发现本应该存储相同数据的resource_id列在两个表中定义不同,一表为VARCHAR而另外一表为BIGINT,外部结果集的字段类型和NOT EXIST字表中字段类型不同导致NOT EXISTS子查询中无法使用索引,使得子查询性能较差,最终影响整个查询的执行性能
在一些业务场景中,会使用NOT EXISTS语句确保返回数据不存在于特定集合,部分同事会发现NOT EXISTS有些场景性能较差,甚至有些网上谣言说”NOT EXISTS不走索引”,哪对于NOT EXISTS语句,我们如何优化呢?
##========================================================##
以今天优化的SQL为例,优化前SQL为:
SELECT count(1)
FROM t_monitor m
WHERE NOT exists
(SELECT 1
FROM t_alarm_realtime AS a
WHERE a.resource_id=m.resource_id
AND a.resource_type=m.resource_type
AND a.monitor_name=m.monitor_name)
我们使用LEFT JOIN方式进行优化,优化后SQL为:
SELECT count(1)
FROM t_monitor m
LEFT JOIN t_alarm_realtime AS a
ON a.resource_id=m.resource_id
AND a.resource_type=m.resource_type
AND a.monitor_name=m.monitor_name
WHERE a.resource_id is NULL
优化效果:
优化前执行时间29秒以上,优化后1.2秒,优化提升25倍
##========================================================##
哪NOT EXISTS真的不走索引么?查看两种SQL的执行计划:
使用NOT EXIST方式的执行计划:
使用LEFT JOIN方式的执行计划:
从执行计划来看,两个表都使用了索引,区别在于NOT EXISTS使用“DEPENDENT SUBQUERY”方式,而LEFT JOIN使用普通表关联的方式。
##========================================================##
通过MySQL提供的Profiling方式来查看两种方式的执行过程
使用NOT EXIST方式的执行过程
使用LEFT JOIN方式的执行过程:
从执行过程来看,LEFT JOIN方式的主要消耗在Sending data一项上(1.2s),而NOT EXISTS方式主要消耗在executeing和Sending data两项上,受限于Profiling只存放100行记录缘故,从Profiling中只能看到47个” executeing和Sending data”的组合项(每个组合项约50us),通过执行计划看出,外表t_monitor的数据量为578436行,忽略统计信息不准情况下,使用NOT EXISTS方式应该会产生578436个” executeing和Sending data”的组合项,总计消耗时间=50μs*578436=28921800us=28.92s。
从上面执行过程可以推断出:
使用NOT EXISTS方式的执行性能严重依赖于NOT EXISTS子查询的执行次数即外层查询结果集的数据量。
1、 当外层查询结果集的数据量N较小时执行性能较好,如有N=10执行时间为50μs*10=500us=0.005s,再加上一些额外消耗,执行结果也能在0.01秒或10毫秒内范围,这个响应时间应该能被大部分应用程序接受。
2、 当外层程勋结果集的数据量N较大甚至上千万数据量时,NOT EXISTS的查询性能会变得非常糟糕,甚至会大量消耗服务器IO和CPU资源从而影响其他业务正常运行。
除上述问题外,在优化过程中发现本应该存储相同数据的resource_id列在两个表中定义不同,一表为VARCHAR而另外一表为BIGINT,外部结果集的字段类型和NOT EXIST字表中字段类型不同导致NOT EXISTS子查询中无法使用索引,使得子查询性能较差,最终影响整个查询的执行性能