1G: 模拟 语音
2G(100Kb): 数字 语音
3G/HSPA(100Mbps): 语音 数据业务 互联网应用
4G/LTE(1Gbps): 数据占绝对互道 各类丰富的APP 高速移动
5G(10G+bps): 10-100倍现有用户吞吐率 海量连接 移动互联网 物联网
1.增强移动带宽eMBB
移动通信、超高清视频、高清语音、云办公、云游戏、VR/AR
2.海量机器通信mMTC
智能家居、M2M、智慧城市、VR/AR、智能交通
3.超高可靠低时延通信URLLC
工业自动化、自动驾驶、高可用应用、移动医疗、智能交通
时延、峰值吞吐率、连接数、高速移动性(500KM/h 高铁建设)
美国Verizon、AT&T、FCC
欧盟 2025
中国 2020
LTE系统引入了OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)和MIMO(Multi-Input & Multi-Output,多输入多输出)等关键技术,显著增加了频谱效率和数据传输速率(20M带宽2X2MIMO在64QAM情况下,理论下行最大传输速率为201Mbps,除去信令开销后大概为150Mbps,但根据实际组网以及终端能力限制,一般认为下行峰值速率为100Mbps,上行为50Mbps),并支持多种带宽分配:1.4MHz,3MHz,5MHz,10MHz,15MHz和20MHz等,且支持全球主流2G/3G频段和一些新增频段,因而频谱分配更加灵活,系统容量和覆盖也显著提升。
通信:把1ms分成很多份,这段时间中有上行也有下行。时延很小,但是人类感受不到。
下行:基站给手机发送数据
上行:手机给基站发送数据
移动,手机时间和主基站或者卫星的时间是同步的
联通,可以不同步。
天线的其他知识:
http://www.elecfans.com/d/705287.html
多径效应:电波传播信道中的多径传输现象所引起的干涉延时效应。在实际的无线电波传播信道中(包括所有波段),常有许多时延不同的传输路径。各条传播路径会随时间变化,参与干涉的各分量场之间的相互关系也就随时间而变化,由此引起合成波场的随机变化,从而形成总的接收场的衰落。因此,多径效应是衰落的重要成因。多径效应对于数字通信、雷达最佳检测等都有着十分严重的影响。
阴影效应:在无线通信系统中,移动台在运动的情况下,由于大型建筑物和其他物体对电波的传输路径的阻挡而在传播接收区域上形成半盲区,从而形成电磁场阴影,这种随移动台位置的不断变化而引起的接收点场强中值的起伏变化叫做阴影效应。阴影效应是产生慢衰落的主要原因
多谱勒效应:多普勒效应是波源和观察者有相对运动时观察者接受到的波的频率与波源发出不同频率的现象。远方急驶过来的火车鸣笛声变得尖细(即频率变高,波长变短),而离我们而去的火车鸣笛声变得低沉(即频率变低,波长变长),就是多普勒效应的现象。
呼吸效应:小区呼吸效应指小区的覆盖范围随着网络用户数的变化而变化。当用户
数增加、网络负载增大时,小区的覆盖范围减小;反之当用户数减少、网络
负载降低时小区的覆盖范围增大。
远近效应:小区中的所有用户均以相同的功率发射信号,则靠近基站的手机到达基站的信号就强,而远离基站的手机到达基站的信号就弱,这样将导致强信号掩盖弱信号,这就是移动通信中的"远近效应"问题。
在LTE中,多天线传输可以描述成将调制后的数据映射到不同的天线端口的过程。其输入为调制符号(使用QPSK、16QAM、64QAM调制,对应1个或2个TB),其输出为每个天线端口上的一系列符号,这些符号随后会应用到OFDM的调制器中,并映射到该天线端口的时频网格(即RB)上。
在发射机或接收机按照不同的方式来使用多天线传输可以实现不同的目的:
在发射机或接收机使用多天线可用来提供额外的分集以对抗无线信道的衰落(“传输分集”),这种情况下,不同天线所经历的信号应该拥有低的互相关性,这意味着天线间的间距需要足够大(空间分集,spatial diversity),或者需要使用不同的天线极化方向(极化分集,polarization diversity),传输分集主要用于降低信道衰落。
在发射机或接收机可以按照某种特定的方式来使用多天线以“形成”一个完整的波束。例如,可以最大化目标接收机/发射机方向的整体天线增益,或抑制特定的主要干扰信号。这种“波束赋形(beamforming)”可基于天线间高或低的衰落相关性来实现。波束赋形主要用于提高小区的覆盖。
在发射机和接收机上同时使用多天线可用来建立多个并行的传输通道,这样可以提供非常高的带宽利用率而不会降低相关功率有效性。换句话说,可以在有限的带宽上提供很高的数据速率而不会大比例地降低覆盖。这种通常被称为“空间复用(spatial multiplexing)”,空间复用主要用于提高数据传输速率,数据被分为多个流,这些流同时发送。
LTE的9种
传输模式:
开环:未知定位,路径损耗
闭环:已知路径损耗
空间复用:断点传输,目前支持两个节点传输
分集:正副本信息一样,较少重传率
串扰:电子学上两条信号线之间的耦合现象。(上行和下行的干扰)
无线电干扰:通过发送无线电信号来降低信噪比的方式,达到破坏通信、阻止广播电台信号的行为
根据频率:带内带外干扰
形成干扰的基本要素有三个:
(1)干扰源,指产生干扰的元件、设备或信号。如:雷电、继电器、可控硅、电机、高频时钟等都可 能成为干扰源。
(2)传播路径,指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传 播路径是通过 导线的传导和空间的辐射。
(3)敏感器件,指容易被干扰的对象。如:A/D、D/A变换器,单片机,数字IC, 弱信号放大 器等。
抗干扰设计的基本原则
抑制干扰源
抑制干扰源就是尽可能的减小干扰源。这是抗干扰设计中最优 先考虑和最重要的原则,常常会起到事半功倍的效果。 主要是通过在干扰源两端并联电容 来实现。 抑制干扰源的常用措施如下:
(1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加 续流二极管会 使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。
(2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K 到几十K,电 容选0.01uF),减小电火花影响。
(3)给电机加滤波电路,注意电容、电感引线要尽量短。
(4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的 影响。注意 高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电 容的等效串联电 阻,会影响滤波效果。
(5)布线时避免90度折线,减少高频噪声发射。
(6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声。
(1)利用屏蔽技术减少电磁干扰。为有效的抑制电磁波的辐射和传导及高次谐波引发的噪声电流, 在用变频器驱动的电梯电动机电缆必须采用屏蔽电缆,屏蔽层的电导至少为每相导线芯的电导线的 1/10,且屏蔽层应可靠接地。控制电缆最好使用屏蔽电缆;模拟信号的传输线应使用双屏蔽的双绞线;不同的模拟 信号线应该独立走线,有各自的屏蔽层。以减少线间的耦合,不要把不同的模拟信号置于同 一公共返回线内;低压数字信号线最好使用双屏蔽的双绞线,也可以使用单屏蔽的双绞线。模拟信号和数字信号的传输电缆,应该分别屏蔽和走线应使用短 。
(2)利用接地技术消除电磁干扰。要确保电梯控制柜中的所有设备接地良好,而粗的接地线.连接到电源进线接地点(PE)或接地母排上。特别重要的是,连接到变频器的任何电子控制设备都要与其共地,共地时也应使用短和粗的导线。同时电机电缆的地线应直 接接地或连接到变频器的接地端子(PE)。上述接地电阻值应符合相关标准要求。
(3)利用布线技术改善电磁干扰。电动机电缆应独立于其它电缆走线,同时应避免电机电缆与其它电缆长距离平行走线,以减少变频器输出电压快速变化而产生的电磁干扰; 控制电缆和电源电缆交叉时,应尽可能使它们按 90°角交叉,同时必须用合适的线夹将电机电缆和控制电缆的屏蔽层固定到安装板上。
(4)利用滤波技术降低电磁干扰。利用进线电抗器用于降低由变频器产生的谐波,同时也可用于增加电源阻抗,并帮助吸收附近设备投入工作时产生的浪涌电压和主电源的尖峰电压。进线电抗器串接在电源和变频器功率输入端之间。当对主电源电网的情况不了解时,最好加进线电抗器。在上述电路中还可以使用低通频滤波器(FIR 下同),FIR 滤波器应串接在 进线电抗器和变频器之间。对噪声敏感的环境中运行的电梯变频器, 采用 FIR 滤波器可以有效减小来自变频器传导中的辐射干扰。
(5)照明线干扰、电机反馈的干扰过大、系统电源线受干扰的现场,通过以上各种接地无法消除通讯干扰,可以使用磁环对干扰进行抑制,按以下方法顺序进行增加磁环,通讯恢复正常为止: 1、如照明的两根电源线同时断开如通讯恢复正常,请在控制柜下照明的两线上增加一磁环,缠绕3 圈(孔径20到30,厚10,长20左右的磁环)。如断开照明线并无效果说明照明线并不干扰通讯,不作处理。 2、在通讯线C+、C-上从主板出线处增加一磁环,缠绕一圈。注意只能缠绕一圈,多缠后轿厢通讯显示会变好但轿厢传来的有效信号大部分滤掉,造成轿厢内选登记不上。3、在主板输出给轿厢、呼梯的24V电源和0V地线上增加一磁环缠绕2到3圈。 4、在运行接触器与电机之间三相线各加一磁环缠绕一圈 。 经过以上方法增加磁环后能处理现场的电源、电机、照明干扰。
(6) 磁环材料的选择: 根据干扰信号的频率特点可以选用镍锌铁氧体或锰锌铁氧体,以选用镍锌铁氧体或锰锌铁氧体, 前者的高频特性优于后者。锰锌铁氧体的磁导率在几千—上万,而镍锌铁氧体为几百—上千。铁氧体的磁导率越高,其低频时的阻抗越大,高频时的阻抗越小。所以,在抑制高频干扰时,宜选用镍锌铁氧体;反之则用锰锌铁氧体。 或在同一束电缆上同时套上锰锌和镍锌铁氧体,这样可以抑制的干扰频段较宽。磁环的尺寸选择: 磁环的内外径差值越大,纵向高度越大,其阻抗也就越大,但磁环内径一定要紧包电缆,避免漏磁。 磁环的安装位置: 磁环的安装位置应该尽量靠近干扰源,即应紧靠电缆的进出口。
华为5G全景
http://carrier.huawei.com/minisite/huawei5g/?language=cn&from=timeline
5G应用场景与业务类型
https://www.sohu.com/a/241176744_473190
华为狼性文化
华为交换机起家
任正非
导入测试测试数据,测试信号,分析区域信号塔的位置以及空间数据
使用华为GENEX Probe 测试,参考文档教程:
https://max.book118.com/html/2018/0810/8002125105001117.shtm
华为LampSite室内覆盖解决方案