多个线程并发执行时, 在默认情况下CPU是随机切换线程的,当我们需要多个线程来共同完成一件任务,并且我们希望他们有规律的执行, 那么多线程之间需要一些协调通信,以此来帮我们达到多线程共同操作一份数据。
在一个线程进行了规定操作后,就进入等待状态(wait()), 等待其他线程执行完他们的指定代码过后再将其唤醒(notify());在有多个线程进行等待时, 如果需要,可以使用 notifyAll()来唤醒所有的等待线程。
等待唤醒机制就是用于解决线程间通信的问题的,使用到的3个方法的含义如下:
wait:线程不再活动,不再参与调度,进入 wait set 中,因此不会浪费 CPU 资源,也不会去竞争锁了,这时 的线程状态即是 WAITING。它还要等着别的线程执行一个特别的动作,也即是“通知(notify)”在这个对象 上等待的线程从wait set 中释放出来,重新进入到调度队列(ready queue)中
notify:则选取所通知对象的 wait set 中的一个线程释放;例如,餐馆有空位置后,等候就餐最久的顾客最先入座。
notifyAll:则释放所通知对象的 wait set 上的全部线程。
等待唤醒机制其实就是经典的“生产者与消费者”的问题。
例:包子铺线程生产包子,吃货线程消费包子。当包子没有时(包子状态为false),吃货线程等待,包子铺线程生产包子 (即包子状态为true),并通知吃货线程(解除吃货的等待状态),因为已经有包子了,那么包子铺线程进入等待状态。 接下来,吃货线程能否进一步执行则取决于锁的获取情况。如果吃货获取到锁,那么就执行吃包子动作,包子吃完(包 子状态为false),并通知包子铺线程(解除包子铺的等待状态),吃货线程进入等待。包子铺线程能否进一步执行则取 决于锁的获取情况。
public class BaoZi {
String pier ;
String xianer ;
boolean flag = false ;//包子资源 是否存在 包子资源状态
}
public class ChiHuo extends Thread{
private BaoZi bz;
public ChiHuo(String name,BaoZi bz){
super(name);
this.bz = bz;
}
@Override
public void run() {
while(true){
synchronized (bz){
if(bz.flag == false){//没包子
try {
bz.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("吃货正在吃"+bz.pier+bz.xianer+"包子");
bz.flag = false;
bz.notify();
}
}
}
}
public class BaoZiPu extends Thread {
private BaoZi bz;
public BaoZiPu(String name,BaoZi bz){
super(name);
this.bz = bz;
}
@Override
public void run() {
int count = 0;
//造包子
while(true){
//同步
synchronized (bz){
if(bz.flag == true){//包子资源存在
try {
bz.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
// 没有包子 造包子
System.out.println("包子铺开始做包子");
if(count%2 == 0){
// 冰皮 五仁
bz.pier = "冰皮";
bz.xianer = "五仁";
}else{
// 薄皮 牛肉大葱
bz.pier = "薄皮";
bz.xianer = "牛肉大葱";
}
count++;
bz.flag=true;
System.out.println("包子造好了:"+bz.pier+bz.xianer);
System.out.println("吃货来吃吧");
//唤醒等待线程 (吃货)
bz.notify();
}
}
}
}
public class Demo {
public static void main(String[] args) {
//等待唤醒案例
BaoZi bz = new BaoZi();
ChiHuo ch = new ChiHuo("吃货",bz);
BaoZiPu bzp = new BaoZiPu("包子铺",bz);
ch.start();
bzp.start();
}
}
我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题:
如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低 系统的效率,因为频繁创建线程和销毁线程需要时间。
那么有没有一种办法使得线程可以复用,就是执行完一个任务,并不被销毁,而是可以继续执行其他的任务?
在Java中可以通过线程池来达到这样的效果。
线程池:其实就是一个容纳多个线程的容器,其中的线程可以反复使用,
省去了频繁创建线程对象的操作, 无需反复创建线程而消耗过多资源。
合理利用线程池能够带来三个好处:
Java里面线程池的顶级接口是 java.util.concurrent.Executor ,但是严格意义上讲Executor 并不是一个线程池,而只是一个执行线程的工具。真正的线程池接口是 java.util.concurrent.ExecutorService 。
要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,很有可能配置的线程池不是较优 的,因此在 java.util.concurrent.Executors 线程工厂类里面提供了一些静态工厂,生成一些常用的线程池。官 方建议使用Executors工程类来创建线程池对象。
Executors类中有个创建线程池的方法如下:
public class MyRunnable implements Runnable {
@Override
public void run() {
System.out.println("我要一个教练");
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("教练来了: " +
Thread.currentThread().getName());
System.out.println("教我游泳,交完后,教练回到了游泳池");
}
}
public class ThreadPoolDemo {
public static void main(String[] args) {
// 创建线程池对象
ExecutorService service =
Executors.newFixedThreadPool(2);//包含2个线程对象
// 创建Runnable实例对象
MyRunnable r = new MyRunnable();
//自己创建线程对象的方式
// Thread t = new Thread(r);
// t.start(); ‐‐‐> 调用MyRunnable中的run()
// 从线程池中获取线程对象,然后调用MyRunnable中的run()
service.submit(r);
// 再获取个线程对象,调用MyRunnable中的run()
service.submit(r);
service.submit(r);
// 注意:submit方法调用结束后,程序并不终止,是因为线程池控制了线程的关闭。
// 将使用完的线程又归还到了线程池中
// 关闭线程池
//service.shutdown();
}
}
- 面向对象的思想: 做一件事情,找一个能解决这个事情的对象,调用对象的方法,完成事情。
- 函数式编程思想: 只要能获取到结果,谁去做的,怎么做的都不重要,重视的是做什么,不重视怎么做。
Lambda省去面向对象的条条框框,格式由3个部分组成:
Lambda表达式的标准格式为:
(参数类型 参数名称) ‐> { 代码语句 }
格式说明:
Lambda的语法非常简洁,完全没有面向对象复杂的束缚。但是使用时有几个问题需要特别注意:
补充:有且仅有一个抽象方法的接口,称为“函数式接口”。
从一定程度上来说,简洁的lambda的使用取代了复杂的匿名内部类。
public class Person {
private String name;
private int age;
// 省略构造器、toString方法与Getter Setter
}
import java.util.Arrays; public class Demo07ComparatorLambda {
public static void main(String[] args) {
Person[] array = {
new Person("古力娜扎", 19),
new Person("迪丽热巴", 18),
new Person("马尔扎哈", 20)
};
Arrays.sort(array, (Person a, Person b) ‐> {
return a.getAge() ‐ b.getAge();
});
for (Person person : array) {
System.out.println(person);
}
}
}