马尔科夫链蒙特卡洛(MCMC)

在以贝叶斯方法为基础的机器学习技术中,通常需要计算后验概率,然后通过最大后验概率(MAP)等方法进行参数推断和决策。然而,在很多时候,后验分布的形式可能非常复杂,这个时候寻找其中的最大后验估计或者对后验概率进行积分等计算往往非常困难,此时可以通过采样的方法来求解。

作为本系列文章的组成部分,也作为你阅读本文所必须的预备知识,希望各位读者确认已经对如下文章所谈之话题了然于心:

  • 蒙特卡洛(Monte Carlo)法求定积分
  • 蒙特卡洛采样之拒绝采样(Reject Sampling)
  • 矩阵的极限与马尔科夫链(上)
  • 矩阵的极限与马尔科夫链(下)
  • Chapman-Kolmogorov Equation

欢迎关注白马负金羁的CSDN博客 http://blog.csdn.net/baimafujinji,为保证公式、图表得以正确显示,强烈建议你从该地址上查看原版博文。本博客主要关注方向包括:数字图像处理、算法设计与分析、数据结构、机器学习、数据挖掘、统计分析方法、自然语言处理。


从蒙特卡洛积分开始

在此前的文章《

你可能感兴趣的:(机器学习之道,机器学习,重要性采样,MCMC,蒙特卡洛)