采用keras框架构建简单的人脸识别模型

-- coding: utf-8 --

"""
Created on Sat Nov 24 14:13:47 2018

@author: ltx
"""
from keras.models import Sequential
from keras.layers import Conv2D, ZeroPadding2D, Activation, Input, concatenate
from keras.models import Model
from keras.layers.normalization import BatchNormalization
from keras.layers.pooling import MaxPooling2D, AveragePooling2D
from keras.layers.merge import Concatenate
from keras.layers.core import Lambda, Flatten, Dense
from keras.initializers import glorot_uniform
from keras.engine.topology import Layer
from keras import backend as K

------------用于绘制模型细节,可选--------------#

from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
from keras.utils import plot_model

------------------------------------------------#

K.set_image_data_format('channels_first')

import time
import cv2
import os
import numpy as np
from numpy import genfromtxt
import pandas as pd
import tensorflow as tf
import fr_utils
from inception_blocks_v2 import * #Szegedy et al.设计了初始模型,用来将图片生成向量

np.set_printoptions(threshold=np.nan)

--------------导入一个人脸模型----------------------

输入一张人脸图片(96,96,3),模型的维度结构为(3,96,96)

输出为一个128位的向量

FRmodel= faceRecoModel(input_shape=(3,96,96))
print("参数的数量为:"+str(FRmodel.count_params())) #3743280

使用三元组损失函数(A,P,N)进行训练来实现同一个人的图像编码很近,不同的人的图像编码很远

def triplet_loss(y_true,y_pred,alpha=0.2):
"""
参数:
y_true--true标签,当你在Keras里定义了一个损失函数的时候需要它,但是这里不需要
y_pred---列表类型,包含了如下参数:
anchor -- 给定的“anchor”图像的编码,维度为(None,128)
positive -- “positive”图像的编码,维度为(None,128)
negative -- “negative”图像的编码,维度为(None,128)

    alpha;超参数,阈值
返回:
    loss--实数,损失的值
"""
#获取anchor, positive, negative的图像编码
anchor,positive,negative=y_pred[0],y_pred[1],y_pred[2]
#第一步:计算"anchor" 与 "positive"之间编码的距离,这里需要使用axis=-1
pos_dist=tf.reduce_sum(tf.square(tf.subtract(anchor,positive)),axis=-1)
#第二步:计算"anchor" 与 "negative"之间编码的距离,这里需要使用axis=-1
neg_dist=tf.reduce_sum(tf.square(tf.subtract(anchor,negative)),axis=-1)
#第三步:减去之前的两个距离,然后加上alpha
basic_loss=tf.add(tf.subtract(pos_dist,neg_dist),alpha)
#通过取带零的最大值和对训练样本的求和来计算整个公式
loss=tf.reduce_sum(tf.maximum(basic_loss,0))
return loss

with tf.Session() as test:
tf.set_random_seed(1)
y_true = (None, None, None)
y_pred = (tf.random_normal([3, 128], mean=6, stddev=0.1, seed = 1),
tf.random_normal([3, 128], mean=1, stddev=1, seed = 1),
tf.random_normal([3, 128], mean=3, stddev=4, seed = 1))
loss = triplet_loss(y_true, y_pred)

print("loss = " + str(loss.eval()))

----------------加载已训练好的FaceNet模型-----------------

开始时间

start_time=time.clock()

编译模型,反向传播,训练和优化模型

FRmodel.compile(optimizer='adam',loss=triplet_loss,metrics=['accuracy'])

加载权值

fr_utils.load_weights_from_FaceNet(FRmodel)

结束时间

end_time=time.clock()

计算时间差

minium=end_time-start_time
print("执行了:" + str(int(minium / 60)) + "分" + str(int(minium%60)) + "秒")

---------加载数据库---------------------

database = {}
database["danielle"] = fr_utils.img_to_encoding("images/danielle.png", FRmodel)
database["younes"] = fr_utils.img_to_encoding("images/younes.jpg", FRmodel)
database["tian"] = fr_utils.img_to_encoding("images/tian.jpg", FRmodel)
database["andrew"] = fr_utils.img_to_encoding("images/andrew.jpg", FRmodel)
database["kian"] = fr_utils.img_to_encoding("images/kian.jpg", FRmodel)
database["dan"] = fr_utils.img_to_encoding("images/dan.jpg", FRmodel)
database["sebastiano"] = fr_utils.img_to_encoding("images/sebastiano.jpg", FRmodel)
database["bertrand"] = fr_utils.img_to_encoding("images/bertrand.jpg", FRmodel)
database["kevin"] = fr_utils.img_to_encoding("images/kevin.jpg", FRmodel)
database["felix"] = fr_utils.img_to_encoding("images/felix.jpg", FRmodel)
database["benoit"] = fr_utils.img_to_encoding("images/benoit.jpg", FRmodel)
database["arnaud"] = fr_utils.img_to_encoding("images/arnaud.jpg", FRmodel)

实现了人脸验证

def verify(image_path,identity,database,model):
encoding=fr_utils.img_to_encoding(image_path,model)
dist = np.linalg.norm(encoding - database[identity])

if dist < 0.7:
    print("欢迎 " + str(identity) + "回家!")
    is_door_open = True
else:
    print("经验证,您与" + str(identity) + "不符!")
    is_door_open = False

return dist, is_door_open

verify("images/camera_0.jpg","younes",database,FRmodel)
verify("images/camera_2.jpg", "kian", database, FRmodel)

实现了人脸识别

def who_is_it(image_path,database,model):
#步骤1:计算指定图像的编码,使用fr_utils.img_to_encoding()来计算
encoding=fr_utils.img_to_encoding(image_path,model)

 #步骤2 :找到最相近的编码
## 初始化min_dist变量为足够大的数字,这里设置为100

 min_dist=100
 for(name,enc)in database.items():
     dist = np.linalg.norm(encoding - enc)
     if dist < min_dist:
         min_dist=dist
         identity=name
 if min_dist > 0.7:
     print("抱歉,您的信息不在数据库中。")
 else:
     print("姓名" + str(identity) + "  差距:" + str(min_dist))
 return min_dist, identity

who_is_it("images/camera_0.jpg", database, FRmodel)
----------------------------------实验结果-------------------------------------


采用keras框架构建简单的人脸识别模型_第1张图片
人脸识别.png

你可能感兴趣的:(采用keras框架构建简单的人脸识别模型)