3 python技巧

1 高级特性

1.1 切片

切片(Slice)操作符:

(1)L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引0,1,2,正好是3个元素。

>>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']
>>> L[0:3]
['Michael', 'Sarah', 'Tracy']

(2)如果第一个索引是0,还可以省略:

>>> L[:3]
['Michael', 'Sarah', 'Tracy']

(3)Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片:

>>> L[-2:]
['Bob', 'Jack']
>>> L[-2:-1]
['Bob']

熟练使用切片能够大大简化编程

>>> L = list(range(100))
>>> L
[0, 1, 2, 3, ..., 99]

(4)前10个数,每两个取一个:

>>> L[:10:2]
[0, 2, 4, 6, 8]

(5)所有数,每5个取一个:

>>> L[::5]
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]

(6)甚至什么都不写,只写[:]就可以原样复制一个list:

>>> L[:]
[0, 1, 2, 3, ..., 99]

(7)字符串’xxx’也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:

>>> 'ABCDEFG'[:3]
'ABC'
>>> 'ABCDEFG'[::2]
'ACEG'

1.2 迭代

如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)。

(1)在Python中,迭代是通过for ... in来完成的。只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:

>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for key in d:
...     print(key)
...
a
c
b

(2)默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时迭代key和value,可以用for k, v in d.items()

(3)由于字符串也是可迭代对象,因此,也可以作用于for循环:

>>> for ch in 'ABC':
...     print(ch)
...
A
B
C

(4)那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:

>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False

(5)要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:

>>> for i, value in enumerate(['A', 'B', 'C']):
...     print(i, value)
...
0 A
1 B
2 C

1.3 列表生成式:

列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。

(1)要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11)):

>>> list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

(2)要生成[1x1, 2x2, 3x3, …, 10x10]怎么做?

#循环
>>> L = []
>>> for x in range(1, 11):
...    L.append(x * x)
...
>>> L
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

#列表生成式  
>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

(3)列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。

(4)for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:

>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]

(5)还可以使用两层循环,可以生成全排列:

>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

(6)列表生成式也可以使用两个变量来生成list:

>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.items()]
['y=B', 'x=A', 'z=C']

(7)最后把一个list中所有的字符串变成小写:

>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']

1.4 生成器

如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

(1)要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
 at 0x1022ef630>

(2)创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。

(3)可以通过next()函数获得generator的下一个返回值:

>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
  File "", line 1, in 
StopIteration

(4)使用for循环,因为generator也是可迭代对象:

>>> g = (x * x for x in range(10))
>>> for n in g:
...     print(n)
... 
0
1
4
9
16
25
36
49
64
81

(5)如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1
    return 'done'

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

>>> f = fib(6)
>>> f

(6)这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

>>> for n in fib(6):
...     print(n)
...
1
1
2
3
5
8

1.5 迭代器

可以直接作用于for循环的数据类型有以下几种:

(1)一类是集合数据类型,如listtupledictsetstr等;

(2)一类是generator,包括生成器和带yield的generator function。

(3)这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

(4)可以使用isinstance()判断一个对象是否是Iterable对象:

(5)而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

(6)可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator

(7)可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False


(8)生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

2 正则表达式

正则表达式是一种用来匹配字符串的强有力的武器。它的设计思想是用一种描述性的语言来给字符串定义一个规则,凡是符合规则的字符串,我们就认为它“匹配”了,否则,该字符串就是不合法的。

(1)我们要首先了解如何用字符来描述字符?

1)`\d`可以匹配一个数字
2)`\w`可以匹配一个字母或数字
3)'.'可以匹配任意字符
4)'*'表示任意个字符(包括0个)
5)'+'表示至少一个字符
6)'?'表示0个或1个字符
7)'{n}'表示n个字符
8)'{n,m}'表示n-m个字符
9)'\s'可以匹配一个空格(也包括Tab等空白符)

(2)进阶:要做更精确地匹配,可以用[]表示范围

1)[0-9a-zA-Z\_] 可以匹配一个数字、字母或者下划线;
2)[0-9a-zA-Z\_]+ 可以匹配至少由一个数字、字母或者下划线组成的字符串,比如'a100','0_Z','Py3000'等等;
3)[a-zA-Z\_][0-9a-zA-Z\_]* 可以匹配由字母或下划线开头,后接任意个由一个数字、字母或者下划线组成的字符串,也就是Python合法的变量;
4)[a-zA-Z\_][0-9a-zA-Z\_]{0, 19} 更精确地限制了变量的长度是1-20个字符(前面1个字符+后面最多19个字符)
5)A|B 可以匹配A或B,所以(P|p)ython 可以匹配'Python'或者'python'。
6)^表示行的开头,^\d表示必须以数字开头
7)$表示行的结束,\d$表示必须以数字结束。
8)py也可以匹配'python',但是加上^py$就变成了整行匹配,就只能匹配'py'了

(3)re模块

Python提供re模块,包含所有正则表达式的功能。由于Python的字符串本身也用\转义,所以要特别注意:

s = 'ABC\\-001' # Python的字符串
# 对应的正则表达式字符串变成:
# 'ABC\-001'

因此我们强烈建议使用Python的r前缀,就不用考虑转义的问题了:

s = r'ABC\-001' # Python的字符串
# 对应的正则表达式字符串不变:
# 'ABC\-001'

match()方法判断是否匹配,如果匹配成功,返回一个Match对象,否则返回None

test = '用户输入的字符串'
if re.match(r'正则表达式', test):
    print('ok')
else:
    print('failed')

(4)切分字符串

>>> re.split(r'[\s\,\;]+', 'a,b;; c  d')
['a', 'b', 'c', 'd']

(5)分组

正则表达式还有提取子串的强大功能。用()表示的就是要提取的分组(Group)。

#^(\d{3})-(\d{3,8})$分别定义了两个组

>>> m = re.match(r'^(\d{3})-(\d{3,8})$', '010-12345')
>>> m
<_sre.SRE_Match object; span=(0, 9), match='010-12345'>
>>> m.group(0)
'010-12345'
>>> m.group(1)
'010'
>>> m.group(2)
'12345'

(6)贪婪匹配

最后需要特别指出的是,正则匹配默认是贪婪匹配,也就是匹配尽可能多的字符。举例如下,匹配出数字后面的0

>>> re.match(r'^(\d+)(0*)$', '102300').groups()
('102300', '')

由于\d+采用贪婪匹配,直接把后面的0全部匹配了,结果0*只能匹配空字符串了。

必须让\d+采用非贪婪匹配(也就是尽可能少匹配),才能把后面的0匹配出来,加个?就可以让\d+采用非贪婪匹配:

>>> re.match(r'^(\d+?)(0*)$', '102300').groups()
('1023', '00')

(7)编译

1)编译正则表达式,如果正则表达式的字符串本身不合法,会报错;

2)用编译后的正则表达式去匹配字符串。

如果一个正则表达式要重复使用几千次,出于效率的考虑,我们可以预编译该正则表达式,接下来重复使用时就不需要编译这个步骤了,直接匹配:

>>> import re
# 编译:
>>> re_telephone = re.compile(r'^(\d{3})-(\d{3,8})$')
# 使用:
>>> re_telephone.match('010-12345').groups()
('010', '12345')
>>> re_telephone.match('010-8086').groups()
('010', '8086')

3 特殊语法: filter、map、reduce、lambda

转自下面链接:

http://www.cnblogs.com/longdouhzt/archive/2012/05/19/2508844.html

1)filter(function, sequence):对sequence中的item依次执行function(item),将执行结果为True的item组成一个List/String/Tuple(取决于sequence的类型)返回:

>>> def f(x): return x % 2 != 0 and x % 3 != 0 
>>> filter(f, range(2, 25)) 
[5, 7, 11, 13, 17, 19, 23]
>>> def f(x): return x != 'a' 
>>> filter(f, "abcdef") 
'bcdef'

2)map(function, sequence) :对sequence中的item依次执行function(item),见执行结果组成一个List返回:

>>> def cube(x): return x*x*x 
>>> map(cube, range(1, 11)) 
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]
>>> def cube(x) : return x + x 
... 
>>> map(cube , "abcde") 
['aa', 'bb', 'cc', 'dd', 'ee']

另外map也支持多个sequence,这就要求function也支持相应数量的参数输入:

>>> def add(x, y): return x+y 
>>> map(add, range(8), range(8)) 
[0, 2, 4, 6, 8, 10, 12, 14]

3)reduce(function, sequence, starting_value):对sequence中的item顺序迭代调用function,如果有starting_value,还可以作为初始值调用,例如可以用来对List求和:

>>> def add(x,y): return x + y 
>>> reduce(add, range(1, 11)) 
55 (注:1+2+3+4+5+6+7+8+9+10)
>>> reduce(add, range(1, 11), 20) 
75 (注:1+2+3+4+5+6+7+8+9+10+20)

4)lambda:这是Python支持一种有趣的语法,它允许你快速定义单行的最小函数,类似与C语言中的宏,这些叫做lambda的函数,是从LISP借用来的,可以用在任何需要函数的地方:

>>> g = lambda x: x * 2 
>>> g(3) 
6 
>>> (lambda x: x * 2)(3) 
6

5)把filter map reduce 和lambda结合起来用,函数就可以简单的写成一行。

kmpathes = filter(lambda kmpath: kmpath, map(lambda kmpath: string.strip(kmpath),string.split(l, ':')))

对 l 中的所有元素以’:’做分割,得出一个列表。对这个列表的每一个元素做字符串strip,形成一个列表。对这个列表的每一个元素做直接返回操作(这个地方可以加上过滤条件限制),最终获得一个字符串被’:’分割的列表,列表中的每一个字符串都做了strip,并可以对特殊字符串过滤。

你可能感兴趣的:(python)