ACM模版
可以解决一类静态,离线区间查询问题。
参考题目链接:
BZOJ 2038 [2009国家集训队]小Z的袜子(hose)
题解:
只需要统计区间内各个数出现次数的平方和。
莫队算法,两种方法,一种是直接分成sqrt(n)块,分块排序。
另外一种是求得曼哈顿距离最小生成树,根据manhattan MST的dfs序求解。
const int MAXN = 50010;
const int MAXM = 50010;
struct Query
{
int L, R, id;
} node[MAXM];
long long gcd(long long a, long long b)
{
if (b == 0)
{
return a;
}
return gcd(b, a % b);
}
struct Ans
{
long long a, b; // 分数a/b
void reduce() // 分数化简
{
long long d = gcd(a, b);
a /= d;
b /= d;
return ;
}
} ans[MAXM];
int a[MAXN];
int num[MAXN];
int n, m, unit;
bool cmp(Query a, Query b)
{
if (a.L / unit != b.L / unit)
{
return a.L / unit < b.L / unit;
}
else
{
return a.R < b.R;
}
}
void work()
{
long long temp = 0;
memset(num, 0, sizeof(num));
int L = 1;
int R = 0;
for (int i = 0; i < m; i++)
{
while (R < node[i].R)
{
R++;
temp -= (long long)num[a[R]] * num[a[R]];
num[a[R]]++;
temp += (long long)num[a[R]] * num[a[R]];
}
while (R > node[i].R)
{
temp -= (long long)num[a[R]] * num[a[R]];
num[a[R]]--;
temp += (long long)num[a[R]] * num[a[R]];
R--;
}
while (L < node[i].L)
{
temp -= (long long)num[a[L]] * num[a[L]];
num[a[L]]--;
temp += (long long)num[a[L]] * num[a[L]];
L++;
}
while (L > node[i].L)
{
L--;
temp -= (long long)num[a[L]] * num[a[L]];
num[a[L]]++;
temp += (long long)num[a[L]] * num[a[L]];
}
ans[node[i].id].a = temp - (R - L + 1);
ans[node[i].id].b = (long long)(R - L + 1) * (R - L);
ans[node[i].id].reduce();
}
return ;
}
int main()
{
while (scanf("%d%d", &n, &m) == 2)
{
for (int i = 1; i <= n; i++)
{
scanf("%d", &a[i]);
}
for (int i = 0; i < m; i++)
{
node[i].id = i;
scanf("%d%d", &node[i].L, &node[i].R);
}
unit = (int)sqrt(n);
sort(node,node+m,cmp);
work();
for (int i = 0; i < m; i++)
{
printf("%lld/%lld\n", ans[i].a, ans[i].b);
}
}
return 0;
}
const int MAXN = 50010;
const int MAXM = 50010;
const int INF = 0x3f3f3f3f;
struct Point
{
int x, y, id;
} p[MAXN], pp[MAXN];
bool cmp(Point a, Point b)
{
if (a.x != b.x)
{
return a.x < b.x;
}
else
{
return a.y < b.y;
}
}
// 树状数组,找y-x大于当前的,但是y+x最小的
struct BIT
{
int min_val,pos;
void init()
{
min_val = INF;
pos = -1;
return ;
}
} bit[MAXN];
struct Edge
{
int u, v, d;
} edge[MAXN << 2];
bool cmpedge(Edge a, Edge b)
{
return a.d < b.d;
}
int tot;
int n;
int F[MAXN];
int find(int x)
{
if (F[x] == -1)
{
return x;
}
else
{
return F[x] = find(F[x]);
}
}
void addedge(int u, int v, int d)
{
edge[tot].u = u;
edge[tot].v = v;
edge[tot++].d = d;
return ;
}
struct Graph
{
int to,next;
} e[MAXN << 1];
int total, head[MAXN];
void _addedge(int u, int v)
{
e[total].to = v;
e[total].next = head[u];
head[u] = total++;
return ;
}
int lowbit(int x)
{
return x & (-x);
}
void update(int i, int val, int pos)
{
while (i > 0)
{
if (val < bit[i].min_val)
{
bit[i].min_val = val;
bit[i].pos = pos;
}
i -= lowbit(i);
}
return ;
}
int ask(int i, int m)
{
int min_val = INF, pos = -1;
while (i <= m)
{
if (bit[i].min_val < min_val)
{
min_val = bit[i].min_val;
pos = bit[i].pos;
}
i += lowbit(i);
}
return pos;
}
int dist(Point a, Point b)
{
return abs(a.x - b.x) + abs(a.y - b.y);
}
void Manhattan_minimum_spanning_tree(int n, Point p[])
{
int a[MAXN], b[MAXN];
tot = 0;
for (int dir = 0; dir < 4; dir++)
{
if (dir == 1 || dir == 3)
{
for (int i = 0; i < n; i++)
{
swap(p[i].x, p[i].y);
}
}
else if (dir == 2)
{
for (int i = 0; i < n; i++)
{
p[i].x = -p[i].x;
}
}
sort(p, p + n, cmp);
for (int i = 0; i < n; i++)
{
a[i] = b[i] = p[i].y - p[i].x;
}
sort(b, b + n);
int m = (int)(unique(b, b + n) - b);
for (int i = 1; i <= m; i++)
{
bit[i].init();
}
for (int i = n - 1; i >= 0; i--)
{
int pos = (int)(lower_bound(b, b + m, a[i]) - b + 1);
int ans = ask(pos, m);
if (ans != -1)
{
addedge(p[i].id, p[ans].id, dist(p[i],p[ans]));
}
update(pos, p[i].x + p[i].y, i);
}
}
memset(F, -1, sizeof(F));
sort(edge, edge + tot, cmpedge);
total = 0;
memset(head, -1, sizeof(head));
for (int i = 0; i < tot; i++)
{
int u = edge[i].u, v = edge[i].v;
int t1 = find(u), t2 = find(v);
if (t1 != t2)
{
F[t1] = t2;
_addedge(u, v);
_addedge(v, u);
}
}
return ;
}
int m;
int a[MAXN];
struct Ans
{
long long a, b;
} ans[MAXM];
long long temp ;
int num[MAXN];
void add(int l, int r)
{
for (int i = l; i <= r; i++)
{
temp -= (long long)num[a[i]] * num[a[i]];
num[a[i]]++;
temp += (long long)num[a[i]] * num[a[i]];
}
return ;
}
void del(int l, int r)
{
for (int i = l; i <= r; i++)
{
temp -= (long long)num[a[i]] * num[a[i]];
num[a[i]]--;
temp += (long long)num[a[i]] * num[a[i]];
}
return ;
}
void dfs(int l1, int r1, int l2, int r2, int idx, int pre)
{
if (l2 < l1)
{
add(l2, l1 - 1);
}
if (r2 > r1)
{
add(r1 + 1, r2);
}
if (l2 > l1)
{
del(l1, l2 - 1);
}
if (r2 < r1)
{
del(r2 + 1, r1);
}
ans[pp[idx].id].a = temp - (r2 - l2 + 1);
ans[pp[idx].id].b = (long long)(r2 - l2 + 1) * (r2 - l2);
for (int i = head[idx]; i != -1; i = e[i].next)
{
int v = e[i].to;
if (v == pre)
{
continue;
}
dfs(l2, r2, pp[v].x, pp[v].y, v, idx);
}
if (l2 < l1)
{
del(l2, l1 - 1);
}
if (r2 > r1)
{
del(r1 + 1, r2);
}
if (l2 > l1)
{
add(l1, l2 - 1);
}
if (r2 < r1)
{
add(r2 + 1, r1);
}
return ;
}
long long gcd(long long a, long long b)
{
if (b == 0)
{
return a;
}
else
{
return gcd(b, a % b);
}
}
int main()
{
while (scanf("%d%d", &n, &m) == 2)
{
for (int i = 1; i <= n; i++)
{
scanf("%d", &a[i]);
}
for (int i = 0; i < m; i++)
{
scanf("%d%d", &p[i].x, &p[i].y);
p[i].id = i;
pp[i] = p[i];
}
Manhattan_minimum_spanning_tree(m, p);
memset(num, 0, sizeof(num));
temp = 0;
dfs(1, 0, pp[0].x, pp[0].y, 0, -1);
for (int i = 0; i < m; i++)
{
long long d = gcd(ans[i].a, ans[i].b);
printf("%lld/%lld\n", ans[i].a / d, ans[i].b / d);
}
}
return 0;
}