POJ 1077八数码问题(cantor展开+BFS)

Eight
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 28887   Accepted: 12584   Special Judge

Description

The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:
 1  2  3  4 

 5  6  7  8 

 9 10 11 12 

13 14 15  x 

where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
 1  2  3  4    1  2  3  4    1  2  3  4    1  2  3  4 

 5  6  7  8    5  6  7  8    5  6  7  8    5  6  7  8 

 9  x 10 12    9 10  x 12    9 10 11 12    9 10 11 12 

13 14 11 15   13 14 11 15   13 14  x 15   13 14 15  x 

           r->           d->           r-> 

The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.

Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).

In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.

Input

You will receive a description of a configuration of the 8 puzzle. The description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle
 1  2  3 

 x  4  6 

 7  5  8 

is described by this list:
 1 2 3 x 4 6 7 5 8 

Output

You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line.

Sample Input

 2  3  4  1  5  x  7  6  8 

Sample Output

ullddrurdllurdruldr


广度搜索很好想,主要难想的地方在hash判重,这里用到的是cantor展开判重复

基本思想是,从全排列组成的数字中,找出比他小的有数有多少

对于一个数字,从第一位看起,找他后面有多少个比这一位小的位,比如有3个,那就是假设如果交换

这两位那么后面的数无论怎么排列都比以前小,也就是比原来那个数小的数有剩下位数全排列种类数的个数。


比如213456789

第一位2后面有一个数1比他小,假设交换

1(23456789)括号里面的数无论怎么排列都比原来的213456789小吧

那就是8!种

再比如312456789

第一位3后面有两个数1和2比他小,假设交换

1(32456789)括号里面的数无论怎么排列都比原来的312456789小吧

2(13456789)括号里面的数无论怎么排列都比原来的312456789小吧

那就是8!+8!种

其他位数也是都是这样运算的。


代码:

#include
#include
#include
#include
using namespace std;
struct node {
    int a[3][3] ;
    int x,y ;
    char states[100];
    node(){
        memset(states,'\0',sizeof(states));
        memset(a,0,sizeof(a));
        x=0;y=0;
    }
};
node h;
const int MAXN=1000000;///最多是9!
int fac[]={1,1,2,6,24,120,720,5040,40320,362880};///康拖展开判重0!1!2!3!4!5!6!7!8!9!
bool vis[MAXN];///标记
int addx[4]={-1,1,0,0};
int addy[4]={0,0,-1,1};

int cantor(int m[3][3])///康拖展开求该序列的hash值
{
    int s[9];
    int k=0;
    for(int i=0;i<3;i++){
        for(int j=0;j<3;j++){
            s[k++]=m[i][j];
        }
    }
    int sum=0;
    for(int i=0;i<9;i++)
    {
        int num=0;
        for(int j=i+1;j<9;j++)
          if(s[j] qq;
    qq.push(h);
    while(!qq.empty()){
        node top=qq.front();
        qq.pop();
        if(cantor(top.a)==1){
            printf("%s\n",top.states);
            return ;
        }
        int ch[3][3];
        for(int i=0;i<3;i++){
            for(int j=0;j<3;j++){
                ch[i][j]=top.a[i][j];
            }
        }
        for(int i=0;i<4;i++){
            int newx=top.x+addx[i];
            int newy=top.y+addy[i];
            if(newx>=0&&newx<3&&newy>=0&&newy<3){
                swap(ch[newx][newy],ch[top.x][top.y]);
                if(!vis[cantor(ch)]){
                    node pp;
                    memcpy(pp.a,ch,9*sizeof(int));///快速复制数组
                    memcpy(pp.states,top.states,sizeof(top.states));
                    pp.x=newx;
                    pp.y=newy;
                    if(i==0)strcat(pp.states,"u");
                    if(i==1)strcat(pp.states,"d");
                    if(i==2)strcat(pp.states,"l");
                    if(i==3)strcat(pp.states,"r");
                    qq.push(pp);
                    vis[cantor(pp.a)]=true;
                }
                swap(ch[newx][newy],ch[top.x][top.y]);
            }
        }
    }

}
int main(){
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int arry[9];
    for(int i=0;i<9;i++){
        char c[2];
        scanf("%s",&c);
        if(c[0]=='x')arry[i]=9;
        else arry[i]=c[0]-'0';
    }
    int k=0;
    for(int i=0;i<3;i++){
        for(int j=0;j<3;j++){
            h.a[i][j]=arry[k++];
            if(h.a[i][j]==9){
                h.x=i;
                h.y=j;
            }
        }
    }
    memset(vis,false,sizeof(vis));
    vis[cantor(h.a)]=true;
    bfs();
   return 0;
}





你可能感兴趣的:(POJ 1077八数码问题(cantor展开+BFS))