就是一群人合作做事,彼此通信分工,有条不紊
wait之后失去了cpu,会失去资源吗?已经获得的锁没有了?wait->wait set wating notify ready queue
用sleep则不会释放
用wait则释放
因此唤醒后不能立刻调度,还需要竞争锁与cpu
等待唤醒机制就是用于解决线程间通信的问题的,使用到的3个方法的含义如下:
调用wait和notify方法需要注意的细节
频繁的创建销毁大量线程效率低,统一管理最好
/*
2.创建一个类,实现Runnable接口,重写run方法,设置线程任务
*/
public class RunnableImpl implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+"创建了一个新的线程执行");
}
}
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
/*
线程池:JDK1.5之后提供的
java.util.concurrent.Executors:线程池的工厂类,用来生成线程池
Executors类中的静态方法:
static ExecutorService newFixedThreadPool(int nThreads) 创建一个可重用固定线程数的线程池
参数:
int nThreads:创建线程池中包含的线程数量
返回值:
ExecutorService接口,返回的是ExecutorService接口的实现类对象,我们可以使用ExecutorService接口接收(面向接口编程)
java.util.concurrent.ExecutorService:线程池接口
用来从线程池中获取线程,调用start方法,执行线程任务
submit(Runnable task) 提交一个 Runnable 任务用于执行
关闭/销毁线程池的方法
void shutdown()
线程池的使用步骤:
1.使用线程池的工厂类Executors里边提供的静态方法newFixedThreadPool生产一个指定线程数量的线程池
2.创建一个类,实现Runnable接口,重写run方法,设置线程任务
3.调用ExecutorService中的方法submit,传递线程任务(实现类),开启线程,执行run方法
4.调用ExecutorService中的方法shutdown销毁线程池(不建议执行)
*/
public class Demo01ThreadPool {
public static void main(String[] args) {
//1.使用线程池的工厂类Executors里边提供的静态方法newFixedThreadPool生产一个指定线程数量的线程池
ExecutorService es = Executors.newFixedThreadPool(2);
//3.调用ExecutorService中的方法submit,传递线程任务(实现类),开启线程,执行run方法
es.submit(new RunnableImpl());//pool-1-thread-1创建了一个新的线程执行
//线程池会一直开启,使用完了线程,会自动把线程归还给线程池,线程可以继续使用
es.submit(new RunnableImpl());//pool-1-thread-1创建了一个新的线程执行
es.submit(new RunnableImpl());//pool-1-thread-2创建了一个新的线程执行
//4.调用ExecutorService中的方法shutdown销毁线程池(不建议执行)
es.shutdown();
es.submit(new RunnableImpl());//抛异常,线程池都没有了,就不能获取线程了
}
/*
* ——————————————————————————————————————————————
Exception in thread "main" java.util.concurrent.RejectedExecutionException: Task java.util.concurrent.FutureTask@7cdbc5d3 rejected from java.util.concurrent.ThreadPoolExecutor@3aa9e816[Shutting down, pool size = 2, active threads = 2, queued tasks = 1, completed tasks = 0]
at java.base/java.util.concurrent.ThreadPoolExecutor$AbortPolicy.rejectedExecution(ThreadPoolExecutor.java:2104)
at java.base/java.util.concurrent.ThreadPoolExecutor.reject(ThreadPoolExecutor.java:848)
at java.base/java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1397)
at java.base/java.util.concurrent.AbstractExecutorService.submit(AbstractExecutorService.java:118)
at com.itheima.demo02.ThreadPool.Demo01ThreadPool.main(Demo01ThreadPool.java:39)
pool-1-thread-2创建了一个新的线程执行
pool-1-thread-1创建了一个新的线程执行
pool-1-thread-1创建了一个新的线程执行
* ——————————————————————————————————————————————
* */
}
/*
创建Runnable接口的实现类,重写run方法,设置线程任务
*/
public class RunnableImpl implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+" 新线程创建了");
}
}
/*
使用实现Runnable接口的方式实现多线程程序
*/
/*
* ——————————————————————————————————————————————
* 函数式思想与面向对象思想,
* 函数注重结果,让谁解决都可以,注重实现,代表拉姆达,
* 面向对象思想,解决问题,找一个能解决这个问题的对象,然后让对象来完成操作,注重过程
*
*
* 对于 Runnable 的匿名内部类用法,可以分析出几点内容:
Thread 类需要 Runnable 接口作为参数,其中的抽象 run 方法是用来指定线程任务内容的核心;
为了指定 run 的方法体,不得不需要 Runnable 接口的实现类;
为了省去定义一个 RunnableImpl 实现类的麻烦,不得不使用匿名内部类;
必须覆盖重写抽象 run 方法,所以方法名称、方法参数、方法返回值不得不再写一遍,且不能写错;
而实际上,似乎只有方法体才是关键所在。
* ——————————————————————————————————————————————
* */
public class Demo01Runnable {
public static void main(String[] args) {
//创建Runnable接口的实现类对象
RunnableImpl run = new RunnableImpl();
//创建Thread类对象,构造方法中传递Runnable接口的实现类
Thread t = new Thread(run);
//调用start方法开启新线程,执行run方法
t.start();
//简化代码,使用匿名内部类,实现多线程程序
Runnable r = new Runnable(){
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+" 新线程创建了");
}
};
new Thread(r).start();
//简化代码
new Thread(new Runnable(){
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+" 新线程创建了");
}
}).start();
}
}
/*
Lambda表达式的标准格式:函数式编程思想
由三部分组成:
a.一些参数
b.一个箭头
c.一段代码
格式:
(参数列表) -> {一些重写方法的代码};
解释说明格式:
():接口中抽象方法的参数列表,没有参数,就空着;有参数就写出参数,多个参数使用逗号分隔
->:传递的意思,把参数传递给方法体{}
{}:重写接口的抽象方法的方法体
*/
public class Demo02Lambda {
public static void main(String[] args) {
//使用匿名内部类的方式,实现多线程
new Thread(new Runnable(){
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+" 新线程创建了");
}
}).start();
//使用Lambda表达式,实现多线程
new Thread(()->{
System.out.println(Thread.currentThread().getName()+" 新线程创建了");
}
).start();
//优化省略Lambda
new Thread(()->System.out.println(Thread.currentThread().getName()+" 新线程创建了")).start();
}
}
/*
定一个厨子Cook接口,内含唯一的抽象方法makeFood
*/
public interface Cook {
//定义无参数无返回值的方法makeFood
public abstract void makeFood();
}
/*
需求:
给定一个厨子Cook接口,内含唯一的抽象方法makeFood,且无参数、无返回值。
使用Lambda的标准格式调用invokeCook方法,打印输出“吃饭啦!”字样
*/
public class Demo01Cook {
public static void main(String[] args) {
//调用invokeCook方法,参数是Cook接口,传递Cook接口的匿名内部类对象
invokeCook(new Cook() {
@Override
public void makeFood() {
System.out.println("吃饭了");
}
});
//使用Lambda表达式,简化匿名内部类的书写
invokeCook(()->{
System.out.println("吃饭了");
});
//优化省略Lambda
invokeCook(()-> System.out.println("吃饭了"));
}
//定义一个方法,参数传递Cook接口,方法内部调用Cook接口中的方法makeFood
public static void invokeCook(Cook cook){
cook.makeFood();
}
}
class Person {
private String name;
private int age;
public Person() {
}
public Person(String name, int age) {
this.name = name;
this.age = age;
}
@Override
public String toString() {
return "Person{" +
"name='" + name + '\'' +
", age=" + age +
'}';
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
}
import java.util.Arrays;
/*
Lambda表达式有参数有返回值的练习
需求:
使用数组存储多个Person对象
对数组中的Person对象使用Arrays的sort方法通过年龄进行升序排序
*/
public class Demo01Arrays {
public static void main(String[] args) {
//使用数组存储多个Person对象
Person[] arr = {
new Person("柳岩",38),
new Person("迪丽热巴",18),
new Person("古力娜扎",19)
};
//对数组中的Person对象使用Arrays的sort方法通过年龄进行升序(前边-后边)排序
/*Arrays.sort(arr, new Comparator() {
@Override
public int compare(Person o1, Person o2) {
return o1.getAge()-o2.getAge();
}
});*/
//使用Lambda表达式,简化匿名内部类
Arrays.sort(arr,(Person o1, Person o2)->{
return o1.getAge()-o2.getAge();
});
//优化省略Lambda
Arrays.sort(arr,(o1, o2)->o1.getAge()-o2.getAge());
//遍历数组
for (Person p : arr) {
System.out.println(p);
}
/*
* ——————————————————————————————————————————————
Person{name='迪丽热巴', age=18}
Person{name='古力娜扎', age=19}
Person{name='柳岩', age=38}
* ——————————————————————————————————————————————
* */
}
}
/*
Lambda表达式有参数有返回值的练习
需求:
给定一个计算器Calculator接口,内含抽象方法calc可以将两个int数字相加得到和值
使用Lambda的标准格式调用invokeCalc方法,完成120和130的相加计算
*/
public class Demo01Calculator {
public static void main(String[] args) {
//调用invokeCalc方法,方法的参数是一个接口,可以使用匿名内部类
invokeCalc(10, 20, new Calculator() {
@Override
public int calc(int a, int b) {
return a+b;
}
});
//使用Lambda表达式简化匿名内部类的书写
invokeCalc(120,130,(int a,int b)->{
return a + b;
});
//优化省略Lambda
invokeCalc(120,130,(a,b)-> a + b);
}
/*
定义一个方法
参数传递两个int类型的整数
参数传递Calculator接口
方法内部调用Calculator中的方法calc计算两个整数的和
*/
public static void invokeCalc(int a,int b,Calculator c){
int sum = c.calc(a,b);
System.out.println(sum);
/*
* ——————————————————————————————————————————————
30
250
250
* ——————————————————————————————————————————————
* */
}
}
import java.util.ArrayList;
/*
Lambda表达式:是可推导,可以省略
凡是根据上下文推导出来的内容,都可以省略书写
可以省略的内容:
1.(参数列表):括号中参数列表的数据类型,可以省略不写
2.(参数列表):括号中的参数如果只有一个,那么类型和()都可以省略
3.{一些代码}:如果{}中的代码只有一行,无论是否有返回值,都可以省略({},return,分号)
注意:要省略{},return,分号必须一起省略
*/
public class Demo01ArrayList {
public static void main(String[] args) {
//JDK1.7版本之前,创建集合对象必须把前后的泛型都写上
ArrayList<String> list01 = new ArrayList<String>();
//JDK1.7版本之后,=号后边的泛型可以省略,后边的泛型可以根据前边的泛型推导出来
ArrayList<String> list02 = new ArrayList<>();
}
}