jieba中文分词组件

目录

jieba简介

组件特点

安装方法

算法

使用jieba

分词

添加自定义词典

载入词典

调整词典

关键词提取

基于 TF-IDF 算法的关键词抽取

基于 TextRank 算法的关键词抽取

词性标注

并行分词

Tokenize:返回词语在原文的起止位置

默认模式

搜索模式

ChineseAnalyzer for Whoosh 搜索引擎

命令行分词

延迟加载机制

其他词典


原文地址:https://github.com/fxsjy/jieba

jieba简介

"Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.

翻译成中文:

“结巴”中文分词:做最好的 Python 中文分词组件

组件特点

支持三种分词模式

  • 精确模式,试图将句子最精确地切开,适合文本分析;
  • 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
  • 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。

支持繁体分词

支持自定义词典

MIT 授权协议

安装方法

  • 全自动安装:easy_install jieba 或者 pip install jieba / pip3 install jieba
  • 半自动安装:先下载 http://pypi.python.org/pypi/jieba/ ,解压后运行 python setup.py install
  • 手动安装:将 jieba 目录放置于当前目录或者 site-packages 目录

jieba语法对 Python 2和Python 3 均兼容,通过 import jieba 来引入。

算法

  • 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG);
  • 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合;
  • 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法;

使用jieba

分词

  • jieba.cut 方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型
  • jieba.cut_for_search 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
  • 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8
  • jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用
  • jieba.lcut 以及 jieba.lcut_for_search 直接返回 list
  • jieba.Tokenizer(dictionary=DEFAULT_DICT) 新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射。

代码示例:

# encoding=utf-8
import jieba

seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print("全模式: " + "/ ".join(seg_list))  # 全模式

seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print("精确模式: " + "/ ".join(seg_list))  # 精确模式

seg_list = jieba.cut("他来到了网易杭研大厦")  # 默认是精确模式
print("默认精确模式: " + ", ".join(seg_list))

seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造")  # 搜索引擎模式
print("搜索引擎模式: " + ", ".join(seg_list))

 输出:

全模式: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
精确模式: 我/ 来到/ 北京/ 清华大学
默认精确模式: 他, 来到, 了, 网易, 杭研, 大厦
搜索引擎模式: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, ,, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造

添加自定义词典

载入词典

开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率。

用法: jieba.load_userdict(file_name)  # file_name 为文件类对象或自定义词典的路径

词典格式和 dict.txt 一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name 若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。

词频省略时使用自动计算的能保证分出该词的词频。

例如,自定义的 userdict.txt 词典内容如下:

云计算 5
李小福 2 nr
创新办 3 i
easy_install 3 eng
好用 300
韩玉赏鉴 3 nz
八一双鹿 3 nz
台中
凱特琳 nz
Edu Trust认证 2000

Python 代码如下: 

# encoding=utf-8
import jieba
import jieba.posseg as pseg

jieba.load_userdict("userdict.txt")

jieba.add_word('石墨烯')
jieba.add_word('凱特琳')
jieba.del_word('自定义词')

test_sent = (
    "李小福是创新办主任也是云计算方面的专家; 什么是八一双鹿\n"
    "例如我输入一个带“韩玉赏鉴”的标题,在自定义词库中也增加了此词为N类\n"
    "「台中」正確應該不會被切開。mac上可分出「石墨烯」;此時又可以分出來凱特琳了。"
)

words = jieba.cut(test_sent)
print('/'.join(words))

print("=" * 40)

result = pseg.cut(test_sent)

for w in result:
    print(w.word, "/", w.flag, ", ", end=' ')

print("\n" + "=" * 40)

terms = jieba.cut('easy_install is great')
print('/'.join(terms))
terms = jieba.cut('python 的正则表达式是好用的')
print('/'.join(terms))

print("=" * 40)
# test frequency tune
testlist = [
    ('今天天气不错', ('今天', '天气')),
    ('如果放到post中将出错。', ('中', '将')),
    ('我们中出了一个叛徒', ('中', '出')),
]

for sent, seg in testlist:
    print('/'.join(jieba.cut(sent, HMM=False)))
    word = ''.join(seg)
    print('%s Before: %s, After: %s' % (word, jieba.get_FREQ(word), jieba.suggest_freq(seg, True)))
    print('/'.join(jieba.cut(sent, HMM=False)))
    print("-" * 40)

 输出:

李小福/是/创新办/主任/也/是/云计算/方面/的/专家/;/ /什么/是/八一双鹿/
/例如/我/输入/一个/带/“/韩玉赏鉴/”/的/标题/,/在/自定义/词库/中/也/增加/了/此/词为/N/类/
/「/台中/」/正確/應該/不會/被/切開/。/mac/上/可/分出/「/石墨烯/」/;/此時/又/可以/分出/來/凱特琳/了/。
========================================
李小福 / nr ,  是 / v ,  创新办 / i ,  主任 / b ,  也 / d ,  是 / v ,  云计算 / x ,  方面 / n ,  的 / uj ,  专家 / n ,  ; / x ,    / x ,  什么 / r ,  是 / v ,  八一双鹿 / nz ,  
 / x ,  例如 / v ,  我 / r ,  输入 / v ,  一个 / m ,  带 / v ,  “ / x ,  韩玉赏鉴 / nz ,  ” / x ,  的 / uj ,  标题 / n ,  , / x ,  在 / p ,  自定义 / l ,  词库 / n ,  中 / f ,  也 / d ,  增加 / v ,  了 / ul ,  此 / r ,  词 / n ,  为 / p ,  N / eng ,  类 / q ,  
 / x ,  「 / x ,  台中 / s ,  」 / x ,  正確 / ad ,  應該 / v ,  不 / d ,  會 / v ,  被 / p ,  切開 / ad ,  。 / x ,  mac / eng ,  上 / f ,  可 / v ,  分出 / v ,  「 / x ,  石墨烯 / x ,  」 / x ,  ; / x ,  此時 / c ,  又 / d ,  可以 / c ,  分出 / v ,  來 / zg ,  凱特琳 / nz ,  了 / ul ,  。 / x ,  
========================================
easy_install/ /is/ /great
python/ /的/正则表达式/是/好用/的
========================================
今天天气/不错
今天天气 Before: 3, After: 0
今天/天气/不错
----------------------------------------
如果/放到/post/中将/出错/。
中将 Before: 763, After: 494
如果/放到/post/中/将/出错/。
----------------------------------------
我们/中/出/了/一个/叛徒
中出 Before: 3, After: 3
我们/中/出/了/一个/叛徒
----------------------------------------

更改分词器(默认为 jieba.dt)的 tmp_dir 和 cache_file 属性,可分别指定缓存文件所在的文件夹及其文件名,用于受限的文件系统。

调整词典

  • 使用 add_word(word, freq=None, tag=None) 和 del_word(word) 可在程序中动态修改词典。
  • 使用 suggest_freq(segment, tune=True) 可调节单个词语的词频,使其能(或不能)被分出来。
  • 注意:自动计算的词频在使用 HMM 新词发现功能时可能无效。

代码示例:

# encoding=utf-8
import jieba

print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
jieba.suggest_freq(('中', '将'), True)
print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))

print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
jieba.suggest_freq('台中', True)
print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))

输出: 

如果/放到/post/中将/出错/。
如果/放到/post/中/将/出错/。
「/台/中/」/正确/应该/不会/被/切开
「/台中/」/正确/应该/不会/被/切开

关键词提取

基于 TF-IDF 算法的关键词抽取

import jieba.analyse

jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())
# sentence 为待提取的文本
# topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
# withWeight 为是否一并返回关键词权重值,默认值为 False
# allowPOS 仅包括指定词性的词,默认值为空,即不筛选

jieba.analyse.TFIDF(idf_path=None) # 新建 TFIDF 实例,idf_path 为 IDF 频率文件

代码示例 ,extract_tags.py:

# encoding=utf-8

import sys

sys.path.append('../')

import jieba
import jieba.analyse
from optparse import OptionParser

USAGE = "usage: python extract_tags.py [file name] -k [top k]"

parser = OptionParser(USAGE)
parser.add_option("-k", dest="topK")
opt, args = parser.parse_args()

if len(args) < 1:
    print(USAGE)
    sys.exit(1)

file_name = args[0]

if opt.topK is None:
    topK = 10
else:
    topK = int(opt.topK)
    
# 关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径
# jieba.analyse.set_idf_path("../extra_dict/idf.txt.big")

# 关键词提取所使用停止词(Stop Words)文本语料库可以切换成自定义语料库的路径
# jieba.analyse.set_stop_words("../extra_dict/stop_words.txt")

content = open(file_name, 'rb').read()
tags = jieba.analyse.extract_tags(content, topK=topK)
print(",".join(tags))

基于 TextRank 算法的关键词抽取

jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')) # 直接使用,接口相同,注意默认过滤词性。
jieba.analyse.TextRank() # 新建自定义 TextRank 实例

基本思想:

  • 将待抽取关键词的文本进行分词
  • 以固定窗口大小(默认为5,通过span属性调整),词之间的共现关系,构建图
  • 计算图中节点的PageRank,注意是无向带权图
# encoding=utf-8
import jieba.analyse

s = "此外,公司拟对全资子公司吉林欧亚置业有限公司增资4.3亿元,增资后,吉林欧亚置业注册资本由7000万元增加到5亿元。吉林欧亚置业主要经营范围为房地产开发及百货零售等业务。目前在建吉林欧亚城市商业综合体项目。2013年,实现营业收入0万元,实现净利润-139.13万元。"

for x, w in jieba.analyse.textrank(s, withWeight=True):
    print('%s %s' % (x, w))

词性标注

# 新建自定义分词器,tokenizer 参数可指定内部使用的 jieba.Tokenizer 分词器。
# jieba.posseg.dt 为默认词性标注分词器。
jieba.posseg.POSTokenizer(tokenizer=None) 

标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。

用法示例:

# encoding=utf-8
import jieba.posseg

words = jieba.posseg.cut("我爱北京天安门")
for word, flag in words:
    print('%s %s' % (word, flag))

 输出:

我 r
爱 v
北京 ns
天安门 ns

并行分词

原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升。

基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows

用法:

jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数
jieba.disable_parallel() # 关闭并行分词模式

示例:

# encoding=utf-8
import sys
import time
sys.path.append("../../")
import jieba

jieba.enable_parallel()

url = sys.argv[1]
content = open(url,"rb").read()
t1 = time.time()
words = "/ ".join(jieba.cut(content))

t2 = time.time()
tm_cost = t2-t1

log_f = open("1.log","wb")
log_f.write(words.encode('utf-8'))

print('speed %s bytes/second' % (len(content)/tm_cost))

实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。

注意:并行分词仅支持默认分词器 jieba.dt 和 jieba.posseg.dt。

Tokenize:返回词语在原文的起止位置

注意,输入参数只接受 unicode

默认模式

# encoding=utf-8
import jieba

result1 = jieba.tokenize(u'永和服装饰品有限公司')
for tk in result1:
    print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))

结果:

word 永和		 start: 0 		 end:2
word 服装		 start: 2 		 end:4
word 饰品		 start: 4 		 end:6
word 有限公司		 start: 6 		 end:10

搜索模式

# encoding=utf-8
import jieba

result2 = jieba.tokenize(u'永和服装饰品有限公司', mode='search')
for tk in result2:
    print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))

 结果:

word 永和		 start: 0 		 end:2
word 服装		 start: 2 		 end:4
word 饰品		 start: 4 		 end:6
word 有限		 start: 6 		 end:8
word 公司		 start: 8 		 end:10
word 有限公司		 start: 6 		 end:10

ChineseAnalyzer for Whoosh 搜索引擎

# -*- coding: UTF-8 -*-
from __future__ import unicode_literals
import sys,os
sys.path.append("../")
from whoosh.index import create_in,open_dir
from whoosh.fields import *
from whoosh.qparser import QueryParser

from jieba.analyse.analyzer import ChineseAnalyzer

analyzer = ChineseAnalyzer()

schema = Schema(title=TEXT(stored=True), path=ID(stored=True), content=TEXT(stored=True, analyzer=analyzer))
if not os.path.exists("tmp"):
    os.mkdir("tmp")

ix = create_in("tmp", schema) # for create new index
#ix = open_dir("tmp") # for read only
writer = ix.writer()

writer.add_document(
    title="document1",
    path="/a",
    content="This is the first document we’ve added!"
)

writer.add_document(
    title="document2",
    path="/b",
    content="The second one 你 中文测试中文 is even more interesting! 吃水果"
)

writer.add_document(
    title="document3",
    path="/c",
    content="买水果然后来世博园。"
)

writer.add_document(
    title="document4",
    path="/c",
    content="工信处女干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作"
)

writer.add_document(
    title="document4",
    path="/c",
    content="咱俩交换一下吧。"
)

writer.commit()
searcher = ix.searcher()
parser = QueryParser("content", schema=ix.schema)

for keyword in ("水果世博园","你","first","中文","交换机","交换"):
    print("result of ",keyword)
    q = parser.parse(keyword)
    results = searcher.search(q)
    for hit in results:
        print(hit.highlights("content"))
    print("="*10)

for t in analyzer("我的好朋友是李明;我爱北京天安门;IBM和Microsoft; I have a dream. this is intetesting and interested me a lot"):
    print(t.text)

结果:

result of  水果世博园
买水果然后来世博园
==========
result of  你
second one  中文测试中文 is even more interesting
==========
result of  first
first document we’ve added
==========
result of  中文
second one 你 中文测试中文 is even more interesting
==========
result of  交换机
干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作
==========
result of  交换
咱俩交换一下吧
干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作
==========
我
好
朋友
是
李明
我
爱
北京
天安
天安门
ibm
microsoft
dream
intetest
interest
me
lot

命令行分词

使用示例:python -m jieba news.txt > cut_result.txt

命令行选项(翻译):python -m jieba [options] filename

固定参数:

filename 输入文件

可选参数:

-h, --help 显示此帮助信息并退出
-d [DELIM], --delimiter [DELIM]
使用 DELIM 分隔词语,而不是用默认的' / '。
若不指定 DELIM,则使用一个空格分隔。
-p [DELIM], --pos [DELIM]
启用词性标注;如果指定 DELIM,词语和词性之间
用它分隔,否则用 _ 分隔
-D DICT, --dict DICT 使用 DICT 代替默认词典
-u USER_DICT, --user-dict USER_DICT
使用 USER_DICT 作为附加词典,与默认词典或自定义词典配合使用
-a, --cut-all 全模式分词(不支持词性标注)
-n, --no-hmm 不使用隐含马尔可夫模型
-q, --quiet 不输出载入信息到 STDERR
-V, --version 显示版本信息并退出

如果没有指定文件名,则使用标准输入。

延迟加载机制

jieba 采用延迟加载,import jieba 和 jieba.Tokenizer() 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba,也可以手动初始化。

import jieba

jieba.initialize() # 手动初始化(可选)

在 0.28 之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径:

jieba.set_dictionary('data/dict.txt.big')

例子:

# encoding=utf-8
from __future__ import print_function
import sys

sys.path.append("../")
import jieba


def cuttest(test_sent):
    result = jieba.cut(test_sent)
    print("  ".join(result))


def testcase():
    cuttest("这是一个伸手不见五指的黑夜。我叫孙悟空,我爱北京,我爱Python和C++。")
    cuttest("我不喜欢日本和服。")
    cuttest("雷猴回归人间。")
    cuttest("工信处女干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作")
    cuttest("我需要廉租房")
    cuttest("永和服装饰品有限公司")
    cuttest("我爱北京天安门")
    cuttest("abc")
    cuttest("隐马尔可夫")
    cuttest("雷猴是个好网站")


if __name__ == "__main__":
    testcase()
    jieba.set_dictionary("foobar.txt")
    print("================================")
    testcase()

结果:

这是  一个  伸手不见五指  的  黑夜  。  我  叫  孙悟空  ,  我  爱  北京  ,  我  爱  Python  和  C++  。
我  不  喜欢  日本  和服  。
雷猴  回归  人间  。
工信处  女干事  每月  经过  下属  科室  都  要  亲口  交代  24  口  交换机  等  技术性  器件  的  安装  工作
我  需要  廉租房
永和  服装  饰品  有限公司
我  爱  北京  天安门
abc
隐  马尔可夫
雷猴  是  个  好  网站

其他词典

占用内存较小的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small

支持繁体分词更好的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big

下载你所需要的词典,然后覆盖 jieba/dict.txt 即可;或者用 jieba.set_dictionary('data/dict.txt.big')

你可能感兴趣的:(Java网页爬虫)