找规律
就是二进制展开权重
#include
using namespace std;
using ll = long long;
ll KSM(ll a, ll k) {
ll ret = 1;
for (; k ; k >>= 1) {
if (k & 1)
ret = ret * a;
a = a * a;
}
return ret;
}
ll calc(ll n) {
if (n == 0)
return 0;
return calc(n - KSM(2, log2(n))) + 1;
}
int main() {
// static int a[200][200];
// a[1][1] = 1;
// for (int i = 2; i <= 100; ++i)
// for (int j = 1; j <= i; ++j)
// a[i][j] = a[i - 1][j] + a[i - 1][j - 1],
// a[i][j] %= 2;
// for (int i = 1; i <= 100; ++i) {
// // bitset<1000> v(i);
// // cout << v.count() << " : ";
// int sum = 0;
// for (int j = 1; j <= i; ++j)
// sum += a[i][j];
// cout << KSM(2, calc(i - 1)) << ' ';
// cout << sum << '\n';
// }
ios::sync_with_stdio(0);
int T;
cin >> T;
while (T--) {
ll n;
cin >> n;
cout << KSM(2, calc(n - 1)) << '\n';
}
return 0;
}
最开始没有发现u,v也是1到N,于是大力上了线段树。然而T的无法自理,ZOJ还讨厌我的读入挂,加了就不给我提交。
但是如果发现了u,v也是1到N的,那么注意到答案点的y坐标随着x的增加是单调的,所以直接扫一遍就完事了
AC代码
#include
#include
#include
using namespace std;
using ll = long long;
inline ll read() {
ll d = 0, f = 1;
char s = getchar();
while (s < '0' || s > '9') {
if (s == '-')
f = -1;
s = getchar();
}
while (s >= '0' && s <= '9') {
d = d * 10 + s - '0';
s = getchar();
}
return d * f;
}
int const N = 1e5 + 5;
struct edge {
int y, next;
}a[N], totx[N];
int lasta[N], ne, lastx[N], xne;
int n, m;
void add(int x, int y) {
a[++ne].y = y;
a[ne].next = lasta[x];
lasta[x] = ne;
}
void addtot(int y, int x) {
totx[++xne].y = x;
totx[xne].next = lastx[y];
lastx[y] = xne;
}
int solve(ll s) {
for (int i = 1; i <= n; ++i)
lastx[i] = 0;
xne = 0;
int ret = 0, ansy = n;
ll sumx = 0, sumy = 0, sump = 0;
for (int i = 1; i <= n; ++i) {
for (int j = lasta[i]; j != 0; j = a[j].next) {
int y = a[j].y;
if (y <= ansy) {
sumx += i;
sumy += y;
++sump;
addtot(y, i);
}
}
while (sump * (i + ansy) - sumx - sumy > s) {
for (int j = lastx[ansy]; j != 0; j = totx[j].next) {
int x = totx[j].y;
sumx -= x;
--sump;
sumy -= ansy;
}
--ansy;
}
if (sump * (i + ansy) - sumx - sumy == s)
++ret;
}
return ret;
}
int main() {
int T = read();
while (T--) {
n = read(), m = read();
for (int i = 1; i <= n; ++i)
lasta[i] = 0;
ne = 0;
for (int i = 1; i <= m; ++i) {
int x = read(), y = read();
add(x, y);
}
int Q = read();
while (Q--) {
ll x = read();
printf("%d", solve(x));
if (Q == 0)
putchar('\n');
else
putchar(' ');
}
}
}
如果和我最开始一样傻逼没注意到u和v的范围怎么办呢?那么虽然还是单调的,可是初始的y坐标可以非常巨大。
那么我们分成三部分统计
这样时间复杂度就是O(nqlogn)了
代码如下(因为不加读入挂就是T,加了应该还是,常数有点大,所以不能知道正确性)
/* ***********************************************
Author :BPM136
Created Time :1/19/2019 1:56:52 PM
File Name :B.cpp
************************************************ */
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using ll = long long;
inline ll read() {
ll d = 0, f = 1;
char s = getchar();
while (s < '0' || s > '9') {
if (s == '-')
f = -1;
s = getchar();
}
while (s >= '0' && s <= '9') {
d = d * 10 + s - '0';
s = getchar();
}
return d * f;
}
int const N = 1e5 + 5;
ll sum[N << 2], sumx[N << 2];
int pn[N << 2];
int p[N][2];
int n, m;
struct edge {
int y, next;
}a[N];
int lasta[N], ne;
void pushup(int k) {
pn[k] = pn[k << 1] + pn[k << 1 | 1];
sum[k] = sum[k << 1] + sum[k << 1 | 1];
sumx[k] = sumx[k << 1] + sumx[k << 1 | 1];
}
void SegAdd(int k, int l, int r, int x, int val) {
if (l == r) {
sum[k] += x;
sumx[k] += val;
++pn[k];
return;
}
int mid = (l + r) / 2;
if (x <= mid)
SegAdd(k << 1, l, mid, x, val);
else
SegAdd(k << 1 | 1, mid + 1, r, x, val);
pushup(k);
}
ll sum_n, sum_x, sum_y;
ll SegEFin(int k, int l, int r, ll x, ll val) {
if (l == r) {
sum_n += pn[k];
sum_y += sum[k];
sum_x += sumx[k];
if ((l + x) * sum_n - sum_x - sum_y == val)
return l;
else
return 0;
}
int mid = (l + r) / 2;
if ((mid + x) * (sum_n + pn[k << 1]) - (sum_x + sumx[k << 1]) - (sum_y + sum[k << 1]) >= val)
return SegEFin(k << 1, l, mid, x, val);
else {
sum_n += pn[k << 1];
sum_x += sumx[k << 1];
sum_y += sum[k << 1];
return SegEFin(k << 1 | 1, mid + 1, r, x, val);
}
}
ll SegEF(int x, ll val) {
if (val < 0)
return 0;
sum_n = 0;
sum_x = 0;
sum_y = 0;
return SegEFin(1, 1, n, x, val);
}
ll SegSum(int k, int l, int r, int _l, int _r) {
if (l == _l && r == _r)
return sum[k];
int mid = (l + r) / 2;
if (_r <= mid)
return SegSum(k << 1, l, mid, _l, _r);
if (_l > mid)
return SegSum(k << 1 | 1, mid + 1, r, _l, _r);
return SegSum(k << 1, l, mid, _l, mid) + SegSum(k << 1 | 1, mid + 1, r, mid + 1, _r);
}
ll q[20], Q, ans[20];
void solve() {
for (int i = 0; i <= n * 4; ++i)
pn[i] = sum[i] = sumx[i] = 0;
memset(ans, 0, sizeof(ans));
for (int i = 1; i <= n; ++i) {
for (int j = lasta[i]; j != 0; j = a[j].next) {
int x = a[j].y;
SegAdd(1, 1, n, x, i);
}
for (int j = 1; j <= Q; ++j)
ans[j] += SegEF(i, q[j]) > 0 ? 1 : 0;
}
ll _sumx = 0;
for (int i = 1; i <= m; ++i)
_sumx += n + 1 - p[i][0];
for (int i = 1; i <= Q; ++i) {
ll posy = SegEF(n + 1, q[i] - _sumx);
if (posy > n)
ans[i] += posy - n + 1;
}
for (int i = n - 1; i >= 1; --i) {
for (int j = 1; j <= Q; ++j) {
ll tmp = q[j] - (SegSum(1, 1, n, 1, i) + _sumx);
ll td = tmp / n;
if (tmp >= 0 && td * n == tmp)
++ans[j];
}
}
}
void add(int x, int y) {
a[++ne].y = y;
a[ne].next = lasta[x];
lasta[x] = ne;
}
int main() {
ios::sync_with_stdio(0);
int T = read();
while (T--) {
n = read(), m = read();
for (int i = 0; i <= n; ++i)
lasta[i] = 0;
ne = 0;
for (int i = 1; i <= m; ++i) {
int x = read(), y = read();
p[i][0] = x, p[i][1] = y;
add(x, y);
}
Q = read();
for (int i = 1; i <= Q; ++i)
q[i] = read();
solve();
printf("%lld", ans[1]);
for (int i = 2; i <= Q; ++i)
printf(" %lld", ans[i]);
putchar('\n');
}
return 0;
}
最后,那我们怎么去掉这个log呢?
注意到我们刚刚统计x和y大于所有点的时候,如果n+1不是整数那么全部都不是整数
同理,假如我们对应了一个x,那么到下一个x的时候,假如不是整数,那么同样可以直接扔掉
否则下降到下一个x或者y的这一段,都将是答案
当x超出了之后,再次枚举y,同理维护即可
这样时间复杂度就是O(nq)了
XD
我们枚举每一位,然后统计每一位的贡献就好了
#include
using namespace std;
using ll = long long;
ll max(ll a, ll b) {
if (a > b)
return a;
else
return b;
}
int main() {
ios::sync_with_stdio(0);
// cerr << calc(1000000088888880ll, 10000001ll) << '\n';
// return 0;
int T;
cin >> T;
while (T--) {
int k, m;
cin >> k >> m;
ll ans = 0, i;
for (i = 1; i <= k; i *= 10)
ans += k / i - i + 1;
--ans;
if (ans >= m || (k - (i / 10) == 0 && ans < m - 1))
cout << 0 << '\n';
else {
ll n = k;
for (i = k - i / 10; ans < m - 1; n *= 10) {
i *= 10;
ans += i;
}
ll anss = n - ans + m - 2;
cout << max(anss, k) << '\n';
}
}
return 0;
}